USPAS Accelerator Physics 2019 Northern Illinois University and UT-Batelle

It's Friday!

Space Charge/Emit Compensation (Todd)
Emittance Measurements/Quad Scans (Todd)
Proton Radiotherapy Medical Accelerators (Steve)
Frequency Map Analysis (Todd, if time)

Todd Satogata (Jefferson Lab and ODU) / satogata@jlab.org
Steve Peggs (BNL) / peggs@bnl.gov

Bhawin Dhital (ODU) / bdhit001@odu.edu and Kiel Hock (BNL) / khock@bnl.gov http://www.toddsatogata.net/2019-USPAS

Happy birthday to Emilio Segre (1959 Nobel)!

Happy National Baked Alaska Day, National Freedom Day, and Hula in the Coola Day!

(Also Car Insurance Day; please be careful out there)

Transverse Space Charge

- Space charge is fundamentally Coulomb repulsion of particles within the beam boosted into the lab frame
 - Zero force at center of bunch; grows linearly with transverse r
 - Looks like a quadrupole to first order (just like beam-beam)
 - Force scales as γ^{-2} from boosts

Gaussian

electric/magnetic terms cancel at very high boosters/energies

$$F(r) = \frac{Nq^2}{2\pi\epsilon_0 L} \; \frac{1}{\gamma^2} \; \left\lceil \frac{1 - \exp\left(-r^2/2\sigma^2\right)}{r} \right\rceil \; \approx \; \frac{q}{4\pi\epsilon_0} \; \frac{r}{\gamma^2} \; \frac{(Nq/L)}{\sigma^2} \qquad \text{[linear distrosember 1]}$$

- Force dependent almost entirely on local current density I/σ²
- Assume constant current density in r, slices in z

"Beer can distribution"

Current dependence on z!

Emittances

- Slice betatron oscillations dependent on local current I(z)
- Thermal emittance vs projected emittance
 - Thermal emittance: intrinsic emittance of beam from gun
 - Projected emittance: effective emittance combining all slices
- (x,y) rotationally symmetric
 - Focusing at low energies: solenoids
 - Zeroth order: solenoidal field balances space charge
 - Brillouin flow

http://uspas.fnal.gov/materials/10MIT/Lecture5_BeamDynamicsWithSpaceCharge_text.pdf

(David Dowell, 2010 USPAS)

Envelope Equation of Motion

Equation of motion of beam size oscillations in each slice

$$\sigma'' + K_r \sigma = \frac{I(z)}{2I_A(\beta\gamma)^3\sigma} + \frac{\epsilon_{n,thermal}}{(\beta\gamma)^2\sigma^3} \quad I_A = \frac{4\pi\epsilon_0 mc^3}{e} \approx 17~\mathrm{kA}$$
 solenoid focusing

- Provide solenoid focusing to balance average space charge
 - \bullet This is a local equilibrium: expand $\sigma = \sigma_{eq} + \delta \sigma$

$$K_{eq} = \frac{I}{2I_A(\beta\gamma)^3)\sigma_{eq}^2}$$

- Each slice oscillates around this equilibrium depending on I(z)
- Expand equation of motion and linearize to find

$$\delta\sigma'' + 2K_{eq}\delta\sigma = 0$$

http://uspas.fnal.gov/materials/10MIT/Lecture5_BeamDynamicsWithSpaceCharge_text.pdf

Space Charge Compensation

$$\delta\sigma'' + 2K_{eq}\delta\sigma = 0$$

- Beam distribution starts small at photoinjector
 - Projected emittance spoiled by I-dependent space charge
 - But slice emittances individually are still conserved
- Emittance spoiling is an "incoherent" effect created by projection of current variation into projected emittance
 - Slice emittances oscillate with different amplitudes and phases
 - But also move with same frequency in linearized approximation
- Therefore there are locations where they realign to locally minimize projected emittance

Some Math

Consider small perturbation of the equilibrium radius for each slice,

$$\sigma(\zeta) = \sigma_{eq}(\zeta) + \delta\sigma(\zeta)$$

with the envelope equation for these perturbations being,

$$\delta \sigma''(\zeta) + 2K_{r,eq} \delta \sigma(\zeta) = 0$$
.

The general solution for deviations from the equilibrium radius is,

$$\delta\sigma(z,\zeta) = \frac{\delta\sigma_0'(\zeta)}{\sqrt{2K_r}} \sin\sqrt{2K_r} z + \delta\sigma_0(\zeta) \cos\sqrt{2K_r} z.$$

Setting the initial slice angle to zero and defining the initial radial deviation as,

$$\delta\sigma_0(\zeta) = \sigma_0 - \sigma_{eq}(\zeta)$$
 Eqn. 7

results in an oscillating slice rms size as they propagate along the channel [Rosenzweig&Serafini],

$$\sigma(z,\zeta) = \sigma_{eq}(\zeta) + \left[\sigma_0 - \sigma_{eq}(\zeta)\right] \cos\sqrt{2K_r} z.$$
 Eqn. 8

This solution results in an emittance which oscillates $\pi/2$ out of phase with the beam size,

$$\varepsilon(z) = \frac{1}{2} \sqrt{K_r} \sigma_0 \sigma_{eq} (I_p) \frac{\partial I_{rms}}{I_p} \left| \sin \sqrt{2K_r} z \right| , \qquad \text{Eqn. 9}$$

where δI_{rms} is the rms current along the ζ -coordinate.

http://uspas.fnal.gov/materials/10MIT/Lecture5_BeamDynamicsWithSpaceCharge_text.pdf (David Dowell, 2010 USPAS)

Putting It Together

• Emittance (area in phase space) is maximized at

$$k_p z = \pi/2, 3\pi/2$$

Emittance is locally minimized at

$$k_p z = 0, \pi, 2\pi$$

- the beam extrema!
- Fairly good agreement of simple model with much more complex beamline
- What about acceleration?
 - In the rf gun, in booster linacs...

http://pbpl.physics.ucla.edu/Education/Schools/USPAS_2004/Lecture4.pdf

Emittance Measurements: Quad Scans

- We can measure beam profiles and their projections
 - Observables: σ_x, σ_y
 - But $\sigma = \sqrt{\beta \epsilon}$
 - How do we disentangle these to measure beam "beta" and beam emittance?
- One of the most common methods is a quadrupole scan
 - Vary focusing K of single quadrupole
 - Measure beam size at point downstream (a "harp")
 - Matrix from thin quadrupole to harp is M
 - Then total matrix including harp and quadrupole is

$$M_{\rm q} = \begin{pmatrix} 1 & 0 \\ -K & 1 \end{pmatrix}$$
 $M_{\rm tot} = M_{\rm q2h} M_{\rm q} \models \begin{pmatrix} M_{11} - K M_{12} & M_{12} \\ M_{21} - K M_{22} & M_{22} \end{pmatrix}$

See Minty and Zimmermann textbook...

Emittance Measurements: Quad Scans

$$M_{\text{tot}} = M_{\text{q2h}} M_{\text{q}} \models \begin{pmatrix} M_{11} - K M_{12} & M_{12} \\ M_{21} - K M_{22} & M_{22} \end{pmatrix}$$

How does the beam size propagate? Sigma matrix:

$$\Sigma_{\rm harp} = M_{\rm tot} \Sigma_0 M_{\rm tot}^{\rm T}$$

$$\Sigma = \begin{pmatrix} \langle x^2 \rangle & \langle xx' \rangle \\ \langle xx' \rangle & \langle x'^2 \rangle \end{pmatrix} = \epsilon \begin{pmatrix} \beta & \alpha \\ -\alpha & -\gamma \end{pmatrix} \quad \det \Sigma = \epsilon^2$$

Expand via tedious algebra to find

$$\Sigma_{11} = \langle x^2 \rangle = (M_{11}^2 \Sigma_{11_0} + 2M_{11}M_{12}\Sigma_{12_0} + M_{12}^2 \Sigma_{22_0}) -2(M_{11}M_{12}\Sigma_{11_0} + M_{12}^2 \Sigma_{12_0})K + M_{12}^2 \Sigma_{11_0}K^2$$

Emittance Measurements

$$\Sigma_{11} = \langle x^2 \rangle = (M_{11}^2 \Sigma_{11_0} + 2M_{11}M_{12}\Sigma_{12_0} + M_{12}^2 \Sigma_{22_0})$$
$$-2(M_{11}M_{12}\Sigma_{11_0} + M_{12}^2 \Sigma_{12_0})K + M_{12}^2 \Sigma_{11_0}K^2$$

- This is a quadratic relating an observable <x²>=σ² to a control knob K (quadrupole strength)
- Plot measured σ² vs set K and use model M_{ii}
- Usually M is a drift matrix and so is known reasonably well
- "Convenient" parameterization of above quadratic

$$\Sigma_{11} = A(K - B)^{2} + C = AK^{2} - 2ABK + (C + AB^{2})$$

$$\Sigma_{11_{0}} = \frac{A}{M_{12}^{2}}$$

$$\Sigma_{12_{0}} = -\frac{A}{M_{12}^{2}} \left(-B + \frac{M_{11}}{M_{12}} \right)$$

$$\Sigma_{22_{0}} = \frac{1}{M_{12}^{2}} \left[(AB^{2} + C) - 2AB \left(\frac{M_{11}}{M_{12}} \right) + A \left(\frac{M_{11}}{M_{12}} \right)^{2} \right]$$

Some More Math

$$\Sigma_{11_0} = \frac{A}{M_{12}^2}$$

$$\Sigma_{12_0} = -\frac{A}{M_{12}^2} \left(-B + \frac{M_{11}}{M_{12}} \right)$$

$$\Sigma_{22_0} = \frac{1}{M_{12}^2} \left[(AB^2 + C) - 2AB \left(\frac{M_{11}}{M_{12}} \right) + A \left(\frac{M_{11}}{M_{12}} \right)^2 \right]$$

 But remember sigma matrix elements are related to beam alphas, betas, and emittances

$$\beta_0 = \frac{\Sigma_{11_0}}{\epsilon_0} = \sqrt{\frac{A}{C}} \qquad \epsilon_0^2 = \det \Sigma_0 = \frac{AC}{M_{12}^4} \qquad \Rightarrow \qquad \epsilon_0 = \frac{\sqrt{AC}}{M_{12}^2}$$

$$\alpha_0 = -\frac{\Sigma_{12_0}}{\epsilon_0} = \sqrt{\frac{A}{C}} \left(-B + \frac{M_{11}}{M_{12}} \right)$$

$$\gamma_0 = \frac{\Sigma_{22_0}}{\epsilon_0} = \frac{1}{\sqrt{AC}} \left[(AB^2 + C) - 2AB \left(\frac{M_{11}}{M_{12}} \right) + A \left(\frac{M_{11}}{M_{12}} \right)^2 \right]$$

Systematic Beam Size Scale Errors

4.4.1 Systematic beam size measurement scale errors

What happens when there is a systematic scale error in the beam size measurements at the wire scanner? Say that all beam size measurements are multiplied by a constant multiplicative factor ξ_{σ} , where $\xi_{\sigma} = 1$ is equivalent to no scale error. This is equivalent to multiplying both sides of equation 4.16 by ξ_{σ}^2 :

$$\xi_{\sigma}^{2} \Sigma_{11} = \xi_{\sigma}^{2} A (K - B)^{2} + \xi_{\sigma}^{2} C = A_{\text{new}} (K - B)^{2} + C_{\text{new}}$$
(4.24)

where $A_{\text{new}} = \xi_{\sigma}^2 A$ and $C_{\text{new}} = \xi_{\sigma}^2 C$.

The new emittance is found by using the new fit parameters A_{new} and C_{new} :

$$\epsilon_{0,\text{new}} = \frac{\sqrt{A_{\text{new}}C_{\text{new}}}}{M_{12}^2} = \xi_{\sigma}^2 \epsilon_0 \tag{4.25}$$

Note that the Twiss parameters β_0 , α_0 , and γ_0 do not change since they are all dependent on only ratios of A/C. Thus systematic scale errors of measured beam size only affect the measured emittance, and not the measured Twiss parameters. This is a mildly surprising result.

(Tech note I wrote for a summer student... ask for a copy if you want!)

4.4.2 Systematic quadrupole strength scale errors

What happens when there is a systematic scale error in the strength of the quadrupole that is being changed for this measurement? Say that all quadrupole strengths K are multiplied by a constant multiplicative factor ξ_K , where $\xi_K = 1$ is equivalent to no scale error. This is equivalent to changing equation 4.16 to:

$$\Sigma_{11} = A(\xi_K K - B)^2 + C$$

$$= \xi_K^2 A(K - \xi_K^{-1} B)^2 + C$$

$$= A_{\text{new}} (K - B_{\text{new}})^2 + C$$

where $A_{\text{new}} = \xi_K^2 A$ and $B_{\text{new}} = \xi_K^{-1} B$.

We can then calculate the new emittances and twiss parameters from equations 4.20 to 4.22;

$$\epsilon_{0,\text{new}} = \frac{\sqrt{A_{\text{new}}C}}{M_{12}^2} = \xi_K \epsilon_0 \tag{4.26}$$

$$\beta_{0,\text{new}} = \sqrt{\frac{A_{\text{new}}}{C}} = \xi_K \beta_0 \tag{4.27}$$

$$\alpha_{0,\text{new}} = \sqrt{\frac{A_{\text{new}}}{C}} \left(-B_{\text{new}} + \frac{M_{11}}{M_{12}} \right) = \sqrt{\frac{A}{C}} \left(-B + \frac{\xi_K M_{11}}{M_{12}} \right)$$
(4.28)

$$= \alpha_0 + \epsilon_0 \left(\frac{M_{11}}{M_{12}}\right) (\xi_K - 1) \tag{4.29}$$

Thus systematic scale errors of the scanning quadrupole strength are directly translated to scale errors in the measured emittance and beta function. The α_0 (and $\gamma_0 = (1 + \alpha_0^2)/\beta_0$) dependences are a little more complicated.

Measurement of the Transverse Beam Emittance

Method I: quadrupole scan

Principle: with a well-centered beam, measure the beam size as a function of the quadrupole field strength

Here

Q is the transfer matrix of the quadrupole R is the transfer matrix between the quadrupole and the beam size detector

With
$$Q=\left(egin{array}{cc} 1 & 0 \ K & 1 \end{array}
ight)$$
 then $R=\left(egin{array}{cc} S_{11}+KS_{12} & S_{12} \ S_{21}+KS_{22} & S_{22} \end{array}
ight)$ with $\Sigma_{
m beam}=R\Sigma_{
m beam,0}R^t$

The (11)-element of the beam transfer matrix is found after algebra to be:

$$\begin{split} \varSigma_{11}(=\langle x^2 \rangle) &= ({S_{11}}^2 \varSigma_{11_0} + 2 S_{11} S_{12} \varSigma_{12_0} + {S_{12}}^2 \varSigma_{22_0}) \\ &+ (2 S_{11} S_{12} \varSigma_{11_0} + 2 S_{12}{}^2 \varSigma_{12_0}) K + {S_{12}}^2 \varSigma_{11} K^2 \end{split}$$

which is quadratic in the field strength, K

Measurement of the Transverse Beam Emittance

Method I: quadrupole scan

Principle: with a well-centered beam, measure the beam size as a function of the quadrupole field strength

WARNING! __ DANGER!!!

Here

Q is the transfer matrix of the quadrupole R is the transfer matrix between the quadrupole and the beam size detector

$$Q = \begin{pmatrix} 1 & 0 \\ K & 1 \end{pmatrix}$$

With
$$Q=\left(egin{array}{cc}1&0\K&1\end{array}
ight)$$
 then $R=\left(egin{array}{cc}S_{11}+KS_{12}&S_{12}\S_{21}+KS_{22}&S_{22}\end{array}
ight)$ with $\Sigma_{
m beam}=R\Sigma_{
m beam,0}R^t$

$$\Sigma_{
m beam} = R \Sigma_{
m beam,0} R^t$$

The (11)-element of the beam transfer matrix is found after algebra to be:

$$\begin{split} \varSigma_{11}(=\langle x^2 \rangle) &= ({S_{11}}^2 \varSigma_{11_0} + 2 S_{11} S_{12} \varSigma_{12_0} + {S_{12}}^2 \varSigma_{22_0}) \\ &+ (2 S_{11} S_{12} \varSigma_{11_0} + 2 S_{12}{}^2 \varSigma_{12_0}) K + {S_{12}}^2 \varSigma_{11} K^2 \end{split}$$

which is quadratic in the field strength, K

Measurement: measure beam size versus quadrupole field strength

$$\begin{split} \varSigma_{11}(=\langle x^2 \rangle) &= ({S_{11}}^2 \varSigma_{11_0} + 2 S_{11} S_{12} \varSigma_{12_0} + {S_{12}}^2 \varSigma_{22_0}) \\ &+ (2 S_{11} S_{12} \varSigma_{11_0} + 2 S_{12}{}^2 \varSigma_{12_0}) K + {S_{12}}^2 \varSigma_{11} K^2 \end{split}$$

data:

0.08 0.04 0.02 0.02 0.02 0.04 0.02 change in quadrupole field (kG)

fitting function (parabolic):

$$\Sigma_{11} = A(K - B)^2 + C$$

= $AK^2 - 2ABK + (C + AB^2)$

equating terms (drop subscripts 'o'),

$$A = S_{12}^2 \Sigma_{11} \,,$$
 $-2AB = 2S_{11}S_{12}\Sigma_{11} + 2S_{12}^2 \Sigma_{12} \,,$ $C + AB^2 = S_{11}^{\ 2}\Sigma_{11} + 2S_{11}S_{12}\Sigma_{12} + S_{12}^{\ 2}\Sigma_{22}$

solving for the beam matrix elements:

$$egin{align} arSigma_{11} &= A/{S_{12}}^2 \,, \ & \Sigma_{12} &= -rac{A}{{S_{12}}^2} \left(B + rac{S_{11}}{S_{12}}
ight) \,, \ & \Sigma_{22} &= rac{1}{{S_{12}}^2} \, \left[\left(A B^2 + C
ight) + 2 A B \left(rac{S_{11}}{S_{12}}
ight) + A \left(rac{S_{11}}{S_{12}}
ight)^2
ight] \,. \end{split}$$

The emittance is given from the determinant of the beam matrix:

$$\epsilon_x = \sqrt{\det \, \Sigma_{\mathrm{beam}}^x}$$

$$\begin{split} \det \varSigma_{\text{beam}}^x &= \varSigma_{11} \varSigma_{22} - \varSigma_{12}{}^2 \\ &= AC/S_{12}^4 \,, \end{split}$$

With these 3 fit parameters (A,B), and (C), the 3 Twiss parameters are also known:

$$\beta_x = \frac{\varSigma_{11}}{\epsilon} = \sqrt{\frac{A}{C}} \;,$$

$$\alpha_x = -\frac{\varSigma_{12}}{\epsilon} = \sqrt{\frac{A}{C}} \; \left(B + \frac{S_{11}}{S_{12}}\right) \;,$$

$$\gamma_x = \frac{S_{12}^2}{\sqrt{AC}} \left[(AB^2 + C) + 2AB \left(\frac{S_{11}}{S_{12}}\right) + A \left(\frac{S_{11}}{S_{12}}\right)^2 \right]$$

Method II: fixed optics, measure beam size using multiple measurement devices Recall: the matrix used to transport the Twiss parameters:

$$\begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_f = \begin{pmatrix} R_{11}^2 & -2R_{11}R_{12} & R_{12}^2 \\ -R_{11}R_{21} & 1 + 2R_{12}R_{21} & -R_{12}R_{22} \\ R_{21}^2 & -2R_{21}R_{22} & R_{22}^2 \end{pmatrix}_{fi} \begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_i$$

with fixed optics and multiple measurements of ? at different locations:

$$\begin{pmatrix} (\sigma_{x}^{(1)})^{2} \\ (\sigma_{x}^{(2)})^{2} \\ (\sigma_{x}^{(3)})^{2} \\ \vdots \\ (\sigma_{x}^{n})^{2} \end{pmatrix} = \begin{pmatrix} (R_{11}^{(1)})^{2} & 2R_{11}^{(1)}R_{12}^{(1)} & (R_{12}^{(1)})^{2} \\ (R_{11}^{(2)})^{2} & 2R_{11}^{(2)}R_{12}^{(2)} & (R_{12}^{(2)})^{2} \\ (R_{11}^{(3)})^{2} & 2R_{11}^{(3)}R_{12}^{(3)} & (R_{12}^{(3)})^{2} \\ \vdots \\ (R_{11}^{(n)})^{2} & R_{11}^{(n)}R_{12}^{(n)} & (R_{12}^{(n)})^{2} \end{pmatrix} \begin{pmatrix} \beta(s_{0})\epsilon \\ -\alpha(s_{0})\epsilon \\ \gamma(s_{0})\epsilon \end{pmatrix}$$

simplify notation:

$$\Sigma_x = \mathbf{B} \cdot \mathbf{o}$$

? x

0

goal is to determine the vector o by minimizing the sum (least squares fit):

$$\chi^2 = \sum_{l=1}^n \frac{1}{\sigma_{\Sigma_x^{(l)}}^2} \left(\Sigma_x^{(l)} - \sum_{i=1}^3 B_{li} o_i \right)^2$$

with the symmetric n?n covariance matrix, $\mathbf{T} = (\hat{\mathbf{B}}^t \cdot \hat{\mathbf{B}})^{-1}$

$$\mathbf{T} = (\hat{\mathbf{B}}^t \cdot \hat{\mathbf{B}})^{-1}$$

igspace the least-squares solution is $\mathbf{o} = \mathbf{T} \cdot \hat{\mathbf{B}}^t \cdot \hat{\Sigma}_x$

(the 'hats' show weighting:
$$\hat{B}_{li} = \frac{B_{li}}{\sigma_{\varSigma_x^{(l)}}} \ \hat{\varSigma}_x^{(l)} = \frac{\varSigma_x^{(l)}}{\sigma_{\varSigma_x^{(l)}}} \) \ \ \text{M. Minty: Many USPAS's}$$

Font Color the components of o are known,

$$egin{aligned} \epsilon &= \sqrt{o_1 o_3 - o_2^2} \,, \ eta &= o_1/\epsilon \,, ext{ and } \ lpha &= -o_2/\epsilon \,. \end{aligned}$$

graphical representation of results:

note: coordinate axes are so normalized (design phase ellipse is a circle):

lines show phase

space coverage

of wires:

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{-c} = R^{-1} \begin{pmatrix} \sigma_{x,w} \\ x'_w \end{pmatrix}$$

data: from the SLC injector linac

With methods I & II, the beam sizes may be measured using e.g. screens or wires

(Proton Radiotherapy: Steve)

