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Overview

» Useful nonlinearities

= 10.1: Octupoles and detuning

= 10.2: Discrete motion in action-angle (J,$) space
= Difference (Kobayashi) Hamiltonian
= More lecturer self-indulgence

* 10.3: Motion near half-integer tunes
= Contours of constant Hamiltonian (energy)

* 10.4: Half-integer slow extraction

= A useful application of first-order octupole perturbation
theory

= 10+: Extending to third-integer extraction
Modern use: resonance island extraction at CERN
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Useful Nonlinarities

= (Catch-22 revisited

= Nonlinearities are unavoidable in accelerators
= Nonlinearities can correct motion — to a degree
* Nonlinearities add higher “order” nonlinear behavior

= But nonlinarities can be used for good! .
= Octupoles introduce new first-order behavior |
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Review: 1D Normalized/Action-Angle Coordinates

' (zp,x,) : physical coordinates

/ . .
(z,2") : normalized coordinates

Units
Phase space
Connection to SHO

2NV

a =22+ 22

Normalized (x,Xx’)

Physical (x,Xp)

)
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inverse Floquet transformation, book Equation 3.22

Linear Phase

An

> | advance/turn
y Ap =210y
J ={a?/2
Action-Angle ©=V2Jsing
&' =/2J cos ¢

@&
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10.1: 1D Single Octupole Kick

(zp,x},) : physical coordinates (ii) _ (_ ﬁz 1/(3/3 ) <a3/)

inverse Floquet transformation, book Equation 3.22

/ . .
(z,2") : normalized coordinates

Ax —ng
QTI'QQ a gb
a.Ao
A¢
Octupole gb Normalized phase space > T /
C B///L madx definitions _(manual eqn 1.8)
_ gp gp = By (be careful) o) =3 B
Octupole coefficient By = (0°B,,/0xz?).
= Linear 1D lattice with single octupole kick = gy =
/ 3 — 2
Ax' = —gx 9= gpP
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1D Single Octupole Detuning and Resonances

Az’ = —gx®  g=g,8°
» Use the normalized phase space figure (using triangles)
to show that oy
sin ¢ = g = A¢=ga’sing/a = ga’sin* ¢
AQb — 9@2 Sin4(¢) Use x = asin ¢
3 1 1
= ga® | = — = cos(2¢) + = cos(4¢)
g8 2 8
\ J
|
Amplitude-dependent detuning: Resonant dr|V|ng periodic in
doesn’t depend on phase! betatron phase ¢
0.9
0.8
1 ~ 07
sin* z = §[3 — 4 cos(2z) + cos(4x)] & 32 /\ /\
5 0%
0.2
0.1
0
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(Useful Euler Trick)

sin” (¢) = (ew _Qiesz)” = (21)% i (Z) (—1)lm b (ieyn—m (g=idym

m=0
binomial expansion

1
sin ¢ = 5[1 — cos(2x)] cos® T = 5[1 + cos(2x)]
1 1
sin® ¢ = 1 [3sinx — sin(3z)] cos® T = 1 [3 cosx + cos(3x)]
1 1
sint x = 3 3 — 4 cos(2x) + cos(4x)] cos* x = 3 13 + 4 cos(2z) + cos(4x)]
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Octupole Detuning Amplitude Dependence

" A¢ IS an additional phase advance every turn
= Dependent on amplitude a but not dependent on phase ¢

* This is fundamentally a shift in the tune
= Base (small-amplitude) tune is defined to be Q,
= Tune of particles at amplitude a from octupoles is
3 2
p— | a
Q= Qo 167T9
= Nicely first order in octupole strength g

= Turns out to be first order for quadrupoles, octupoles,

dodecapoles, ... (you can see the pattern; dodecapole homework)
» (Second order in nonlinearity strength for sextupoles, decapoles, ...)
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10.2: Discrete Motion in (J,$) Space

= Using action-angle space where J = a*/2
3

Q:Q0+8—9J
708

= We can work out the general behavior in action along
with phase to find general time evolution for well-
behaved particles:

J = Jy + Zuk cos(kos + o) (10.10)
k=1
Ot = Qo + 2mQt + ka cos(k2mQt + 0;)
k=1

Uk, Vi, Ok, 0. depend on nonlinearities
J no longer constant
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10.2: Discrete Motion in (J,$) Space

o 0.4 ————————
| KAM surfaces \
05} 0-3;\/\_/\/\'
0.5 )
Pendulum-like | I ]
100 05 00 05 10 99T 0% 04 o6 oa
- 5 0 - - 00 02 04 06 08 1.0

XN v

= “Smear’, and Collins distortion functions (T.L. colliins, FNAL
report 84/114)
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What is Really Happening Here?

= Tune varies with amplitude Large amplitude particles:
depending on nonlinearity tune curved below n/m,
not resonant
3 04 ——————————
= —qJ for octupoles
@ =Co+ 87rg p | Aresonance @amplitude particles

Q=n/m=2/5 here: resonant

= When Qg is near resonance, 0.3
particles with amplitude
Aresonance NAvVe resonant tunes
] 02
C
c z § 5 ~ 9<0
St o o - o 01
aresonanée
Qozn/m+6Q ....... T S e T

0.0 ==
0.0/0.2 04 06 08 1.0

g>0 y
| i . Small amplitude particles:
Amplitude a Qy=n/m+5Q — not resonant
P J = a? /2
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One-Turn Discrete Kobayashi “Hamiltonian”

= Conservation suggest that we can write a “conserved”
guantity and apply Hamiltonian dynamics to our discrete
dynamical system
0H, 0H,
Ap=—= AJ=
o.J O

» Here H, is a “one-turn” discrete Kobayashi Hamiltonian.
More generally we can include all 2D nonlinearities:

Hy = 210(QuoJe + QuoJy) + Y Vijw Ji/*J3/? sin(k¢y + 16y + dijr)
ijkl

(10.14)
Amplitude — dependent detuning when k =1 = 0,7 and/or j # 0
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10.3: Motion Near Half-Integer Tunes

Hy = 21(Qu0 Jr + Q40 Jy) + Z Viiki J;;/QJ?Z/Q sin(ko, + oy + Cbijkl)
" (10.14)
= One-turn maps from the one-turn “Hamiltonian” are
still pretty jumpy
* The fractional part of the tunes can be big even if
everything else is perturbatively small

= But we can integrate the above equation and
handwave an “N-turn” map

= Near Q=k/N values, the phase advance is nearly 21
= All motion in N turns becomes perturbatively small
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One-Turn Single Octupole Kobayashi Hamiltonian

% - A¢ = ga®sin®(¢)
= 3 1 1
8 ) — ga2 <§ — 5 COS(2¢) —+ g COS(4¢)) J = 0/2/2
&
g ; 1 J
= Ao = gJ (Z — cos(2¢) + 1 cos(4¢)> <
O _

. o ~ 0H, ~ 0Hy
Difference Hamiltonian  A¢ = 57 AJ = 9

2
Hy = 20Qn7 + 2= (%~ cos(20) +  cos49))
gJ?

A¢p=2mQy+gJ|...] AJ= 7[2 sin(2¢) — sin(4¢)]

https://www.toddsatogata.net/2021-USPAS/SingleOctupoleMap.html
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(Phase Averaging: Throwing Terms Away)

= Krylov-Bogoliubov(-Mitropolsky) Averaging
= Far from resonance, driving terms average to zero
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1D Motion Near Half-Integer Tunes

2
Hy =271QoJ + g7 <§ — cos(2¢) + 1Cos(4¢)>
2 \4 4
1
Q= 5 + 0() 0Q) < 1
Hy = 27w0QJ + [g — %COS(2¢) + %COS(4¢)] qJ?

or more generally, in the presence of many octupoles

Hy = \27r 0@ J} + [\YYO_}+ ‘\/2 cos(2¢ + gbz)}+ }/4 cos(4¢ + (/543] J?
| | |

Tune difference octupole Half-integer Quarter-integer
from 1/2 amplitude “resonance “resonance

dependent  gjying’ driving”
detuning
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Fixed Points, Resonance Driving, Pendula

Hy ~ 21 0Q J + [g — %COS(2¢)] gJ?
H
A¢p = a&; =271 0Q) + ig] gJ? cos(2¢)
AJ = oy _ = gJ”sin(2¢)

0
Where is AJ =07 J =0 is trivial; ¢ = 0, 7 is not
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Motion Near Half-Integer Tunes: Figs 10.3-4

Normalised
displacement, x

0 2 4

Normalised horizontal angle, 2’

Can be used for slow extraction
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Half-Integer Slow Extraction

Displacement, x

A

N +2
Electrostatic o | o
N
Normalised
angle, 2’
=
o
N +1
Electrostatic Magnetic Extraction
septum septum channel
=1 |

= ) turn N + 2 B® _— - —

Beampipe centre line
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Entire USPAS courses on injection/extraction

= http://uspas.fnal.gov/programs/2017/niu/courses/injection-extraction.shtml

Injection and Extraction of Beams

Instructor:
Uli Wienands, Argonne National Lab and Edu Marin-Lacoma, CERN

Purpose and Audience

This course provides an introduction to the physics and design of ring injection and extraction systems. Proton, ion, and
electron systems will be covered. The course is appropriate for anyone with some background in accelerator physics and
technology and with an interest in injection and extraction of beams, including operational staff.

= http://uspas.fnal.gov/materials/17NIU/niu-injection-and-extraction.shtml

Course Materials - NIU - June 2017

Injection and Extraction of Beams

course given by Uli Wienands, Argonne National Lab and Edu Marin-Lacoma, CERN
Updated pdf of the lecture hand-outs: Accelerator Injection and Extraction

Zipped archive of the Mad-X and Python scripts for the Mad-X injection-design exercise: MADX Exercise files.zip (Windows
and Linux users can ignore the _MACOSX folder that will be there after unzipping the file.)
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Resonance Islands Revisited

Todd’s dissertation:
E778 in the Fermilab
Tevatron

5% order resonance
Islands driven to “second
order” in sextupole
strength

Modern usage:
resonance island
extraction at CERN

(Giloavanozzi slides)
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