Handout: Handy Computer Tools

T. Satogata: January 2024 USPAS Accelerator Physics

January 2024

This is a description of a few computational tools that I've found to be useful as a working
physicist. This handout is more to note that these tools exist, and to indicate how they might
be used in class. It is not meant to replace full documentation for any of these tools, nor
is it meant to imply that any of these tools are any better or worse than what you might
already be using!

1 Google

Google functions very well as a single-line scientific calculator. There are many useful con-
stants that Google knows, such as € (epsilon_0), o (mu_0), 7 (pi), the elementary charge
(elementary charge), and proton and electron masses (m_p) and (m_e) respectively. Google
will also intraconvert most units transparently, though it does not seem to handle Gauss
very well (it treats G as the gravitational constant). The * for multiplication is optional.

A few examples:

o (4xpixepsilon_0)*(hbar*c)/(elementary charge) "2
— 137.035999 (Fine structure constant, a™!)

e (1 Tesla)*(1 m) in Volts/c
— 299 792 458 volts / c (a useful unit conversion)

e mu_0(50) (300 A)/(50 cm)
— 0.037699 teslas (field of a 50-turn, 300 A, 50 cm long solenoid)

A nice Arxiv paper on the use of Google calculator for physics is located here:
https://arxiv.org/pdf/physics/0411198.pdf.

2 Mathematica

Mathematica is the industry standard among symbolic manipulation codes, and it also
does arbitrary-precision calculations. If you are fortunate enough to have a license (usually
through a lab or student/educational discount), you probably already know how to use it.
Matrices are entered with curly brackets, e.g. {{1,L},{0,1}}, and matrix multiplication
and vector dot products are performed using a period, e.g. “a.b”. Functions are capitalized
and use square brackets to surround arguments, and Simplify[] is used to aggressively
simplify algebraic expressions. One common stumbling block for a beginner is that the trace
function is Tr[]; Trace[] is used to trace variables, not to calculate matrix traces.

3 Wolfram Alpha

The Wolfram Alpha “Computational Knowledge Engine” includes an interface to some
simple but powerful and convenient Mathematica tools, including numerical and symbolic

https://arxiv.org/pdf/physics/0411198.pdf

miz= gdh = {{1, 0}, {1/ (2«%£), 1}}
miz= gfh = {{1, 0}, {-1/ (2 *f), 1}}
mia= = {{1, L2}, {0, 1}}

mzi= Simplify [qfh.d.gdh.gdh.d.qfh]

L2 L? L(-4f+1L) L2
wer ({1-gg brgg b I gem - ge)
rpt= TE [Simplify [gfh.d.qdh.qdh.d.gfh]]

L2
Qut3]= - m

Figure 1: A simple Mathematica FODO cell calculation.

analysis:

http : //www.wolframalpha.com
Its big drawback is that you cannot define variables, but it has two big advantages: it’s
free, and it’s in a browser so it’s portable. It’s extremely useful for one-off calculations,

particularly when you can edit your entry in a text editor and then cut and paste it into the
Alpha query window. See Fig. for a simple FODO cell matrix calculation in Alpha.

2% Wolfram s

| ({108 -1/, 1AL L2340, 133 {{1, 03, {1/F, 113 {1, /23 {0, 131 {{1,03{-1/(2*), 1} B |

& WolframAlpha e

e’ .602e- oulumbs m) in Tesla
3 GeV/c/(1.602e-19 Coulumbs * 10m) in Tesl

Input:

(-5 Ho 36 26 M5

Input interpretation:

3 Gevjc
Result: teslas
(a2 (1.602 » 107 C) 10 meters
,M' 4[]} ¥ 4fL]
1 f
16 f 12 451 72”_3_3}3] Result:
2
f L0017

Dimensions: Comparisons as magnetic Induction:

2 x2 =~ 0.83 « typical strong degausser magnetic induction =17,
Determinant: =~ (0.3 to 1.5) « saturation magnetic induction of permalloy (05 to 25T

1 ~ 1.0008 « magnetic induction of a magnet used for lifting =17,
Trace: Comparisons as magnetic DD|E?’IZBDDIT‘

) 12 =~ 0.45 » saturation magnetic polarization of high—purity iron 227,

4 f2

~ 6.3 « saturation magnetic polarization of nickel (= 0167,

Figure 2: A simple FODO cell calculation, and a calculation of required magnetic field to bend a ¢ = e,
p =3 GeV/c particle through a bending radius of p =10 m in Wolfram Alpha.

Both Google and Alpha also serve as excellent symbolic calculators and unit converters.
For example, type

3GeV/c /(1.602e — 19 Coulombs * 10m) in Tesla (1)

to calculate that it takes a 1 T magnet to bend a ¢ = e, p =3 GeV /c particle with a bending
radius of p =10 m. Also see Fig. . These nice online unit-friendly calculators will often
get confused about certain symbols. For example, they get confused between e as the base of
natural logarithms vs the charge of the electron. In the above example I just used a number
I know, but Alpha also will recognize it if you type q_e, while Google will recognize it if you
type elementary charge.

Alpha also gives some comparisons to magnetic induction and polarization. Such a magnet

would be comfortably under saturation if made out of good iron, but would be horribly
saturated and probably of bad field quality if made out of nickle.

4 Generative Al

Generative text and image Al tools (ChatGPT/GPT4, Bard, AlphaCode, Claude, etc) have
made tremendous progress in the early 2020s, to the point where they are very useful tools for
many professional scientists ranging from paper editing and summary, to code generation, to
introductory brainstorming partners. The Michigan Institute for Data Science has a useful
quick user’s guide and introduction to the use of generative Al for scientific research:
https://midas.umich.edu/generative-ai-user-guide/

Note that you should always cite your use of generative Al tools (including which one
you are using), with the possible exception of using them to clean up the language of your
scientific writing.

Todd has personally used ChatGPT/GPT4/Bard on at least a weekly basis for over a
year now, and finds them very useful for code prototyping, language cleanup for non-native
English writing, intraconversion of documents (GPT4 can trivially convert graphic text and
tables to LaTeX, for instance), and conceptual brainstorming. Always be aware of the
constraints of whatever generative Al you may be using; for example, ChatGPT/GPT4 are
trained on historical data and therefore do not know about recent events or developments.

A very simple output from GPT4 is shown in Fig. [3] where the prompts included requests
for a plot and corresponding python code for the phase space of the standard map for various
input conditions.

Standard Map for K=1.0 with Various Initial Conditions

woor e g R

w
~
%

-r

\

w
w
=}

il

il

w
N
(%)

Momentum (p)
w
o
o

N
g
%

3.00,0.00)
3.00,0.67)
3.00,1.33)
3.00,2.00)
3.00,2.67)
3.00,3.33)
3.00,4.00)
3.00,4.67)
3.00,5.33)
3.00,6.00)

Initial (p,x)=
Initial (p,x)=
«Initial (p,x)=
Initial (p,x)=
Initial (p,x)=
Initial (p,x)=

(

(

(

(

N
u
=}

N
N
(%)

Initial (p,x)=
Initial (p,x)=
Initial (p,x)=
Initial (p,x)=

2.00

0 1 2 3 4 5 6
Position (x)

Figure 3: A simple standard map plot, completely generated by GPT4 with python source code, based on a
few simple prompts.

One word of caution: as of 2024, do not use generative Al tools to identify citations
for a particular topic in your research! These tools will still happily hallucinate extremely
plausible-looking yet nonexistent reference lists — including authors, titles, and journals
that all look just like real citations.

https://midas.umich.edu/generative-ai-user-guide/

9 yacas

One of Wolfram Alpha’s drawbacks is that it only evaluates single statements; it’s not really
a full free interpreter. Fortunately there are a few free symbolic algebra interpreters out
there of varying complexity. Perhaps the most lightweight is yacas, yet another computer
algebra system, available with source code from

http : //www.yacas.org

yacas went through a period of dormancy but is being maintained again, and it has a
reasonably active user community. You can download the source code and compile it fairly
easily for a simple command-line interpreter. There is also a console view (beneath the
“Yacas Online” link on the above website) that can be used from a web browser connected
to the internet. The syntax is close to Mathematica, but :=is used for variable assignment,
functions delineate arguments with parentheses, and * is used for matrix multiplication.

Yacas also does not simplify algebraic expressions by default, so you will find yourself using
Simplify() in almost every evaluation. Yacas also has a hard time automatically reducing
polynomial fractions, as seen in Fig. . Nonetheless, it is useful for simple symbolic and
algebraic calculations, and it can also perform numerical evaluation. However, yacas does
not integrate with common plotting programs such as gnuplot.

[Yacas calculation center

1 0
Out: 1
2f

In=" qfh:={{1,0},{-1/(2*f),1}}
1 0

Out> -1
— 1
2f

In= di={{1,1/2},{0,1}}

1

To exit Yacaos, enter Ex1t(); or quit or Ctrl-c.
Type 'restart’ to restart Yacaos.
To see example commands, keep typing Example();
In> fodo:=Simplify(qfh*d*qdh*qdh*d*qfn) |Ln> adh:={{1,@},{1/(2*f),1}}
52, 2 S A e

- n= qthz={{1,dr,1- »
8f-Lf L +aLf oue- {11,8), 1134270, 1]}

3 af In> di={{1,L/2},{8,1}}
8f Out= {{1,L/2},{0,1}}
Outz 7 9 10 5 2.4 In= fodo:=Simplity{gfh*d*qdh*qdh*d*qth)

L f-4Lf 8f -L f Outs {{(8FFA2-LAZ*F)/(B*FFA3), (LA2+* LA)/(4*)}, {{LAZFFrO-4F FFAL1A0/(1E*Fr12), (8

FfAG-LA2FFAN /(EFFAENTT
16 f12 8f6 Ins> Simplify(Tracefodol)
Outs (B*FAQ-FATLAZ0) /(4% F1O7)
In» f:=10
Out> 18

S 7 2 In> Li=4
8F-f L Out> 4
9 In= Simplify(Eval(fodol)
4 f Out> {{49/50,22/5}, {(-23/1008, 49,50} }

[o I I

0

Inz Simplify(Trace(fodo))

Figure 4: A simple FODO cell calculation in the web interface (left) and terminal interface (right) to yacas.
The terminal interface example also shows numerical evaluation.

6 maxima

maxima is much more heavyweight (the user’s guide is nearly 1000 pages long), but is
also very well-supported and free. It is derived from Macsyma, a symbolic algebra system

developed by MIT and DOE from the late 1960’s to 2000. It is available with source code
from
http : //maxima.sourceforge.net

maxima’s symbolic interpreter is implemented in LISP, no surprise since it originated at
MIT. The syntax is thus a bit more arcane to those who are familiar with the Mathematica
expression style; it will be more familiar to those who program elisp in emacs. For example,
assignments are made with :, not with an equals sign as in Mathematica or := as in yacas.
Matrices are declared with the matrix () function. Instead of Simplify(), you should gener-
ally use factor (expand()) around most algebraic expressions to simplify them as much as
possible. All statements must end with a semicolon; you can get very confused if you forget
it as the interpreter will look like it’s hung waiting for your input. An example interpreter
session is shown in Fig. (5]).

(%11) d: matrixC[l,L/2],[@,1]0;

L L1
L1 -1
(%ol) L 2]
L 1
LB 1]
%12y gdh: matri=([1, @8], (1024, 1] 0;
L 1 @8]
L]
(%0Z) L1]
[-—- 1]
LZf]
(%132) gfh: motrixC[1.0],[-1/0C2%), 1],
[1 2]
L 1
{%03) L 1]
[--— 1]
2 f]

(%14 fodo: factorfexpand{gfh.d.qdh.qdh.d.gfhyD;
2 2

L]
L -8Ff LIL+41]

L
[- - o]
[2 4 f]
L 8 f]
Chod) []
[2 2]
[L{L-41 L -&8f]
___________ S
[3 2 1]
le f g f 1

(%150 load{functs)

(%obh JoptSlocal /share/maxima /S 24, @ /share s implification/functs .mac
(%10 tracematrix{fodos

(%) S

Figure 5: A simple FODO cell calculation in the terminal interface for maxima.

maxima also has the advantage of integrating well with gnuplot, so it can be used to plot
fairly complex functions (see pp. 117 and onward of the manual). There are also many nice
GUI programs available, such as wxmaxima; these give a much nicer display than maxima
from the command line.

7 Matlab

You may also be familiar with Matlab, a numerical analysis program that is widely used
particularly for signal processing and excellent numerical matrix analysis tools. It excels at
analysis of large sparse matrices. Matlab does not perform any symbolic algebra. Matlab can

be even more costly than Mathematica, but it is particularly useful for design and modeling
of time-varying systems with a powerful graphical environment called Simulink.
The AT accelerator toolbox, developed at SLAC and available at

http: //ssrl.slac.stanford.edu/at

is particularly popular for accelerator modeling and high-level controls at many light sources
around the world. It is implemented fully within Matlab, and requires Matlab licenses to
run.

8 Octave

Since Matlab can be expensive (several thousands of dollars for a single license), there is a
free program called Octave that replicates much of the numerical and matrix analysis with
a very similar syntax. Octave is part of the GNU project but is not directly developed or
supported by the FSF (Free Software Foundation). Octave is installed on the Linux systems
in many computer labs. Octave does not have built-in graphics like Matlab does, so Matlab
user interface code (including AT) is not trivially portable to Octave. However, Octave can
produce many plots that Matlab can by invoking gnuplot as a plotting tool.

Matlab and Octave have a syntax much closer to C. Assignment is done with = and matrix
multiplication is done with *. Matrices are surrounded with square brackets, with commas
separating elements and semicolons separating rows. A semicolon at the end of a statement
also suppresses output. A simple numerical FODO cell example, including calculation of
eigenvalues and phase advance/cell, is shown in Fig. @

octave-3.0.3:1> f=11.1312; # focal length [m]
octave-3.0.3:2> 1=29.79; # fodo cell length [m]
octave-3.0.3:3> qdh=[1,0;1/(2*f),1]; # Half defocusing quad matrix
octave-3.0.3:4= qfh=[1,0;-1/{2*f),1]; # Half focusing quad matrix
octave-3.0.3:5- d=[1,1/2;0,1]; # Drift matrix
octave-3.0.3:6= fodo=qfh*d*qdh*qdh*d*qfh # fodo cell, printed

fodo =

0.104703 49.721456
-0.819892 0.104703

octave-3.0.3:7= [V, lambda]=eig(fodo) # Find and print eigenvalues, eigenvectors
V=

0.99980 + 0.000001 ©.99980 - 0.000001
-0.00000 + 0.020001 -0.00000 - 0.020001

lambda =

0.10470 + 0.994501 0.00000 + 0.000001
0.00000 + 0.000001 0.10470 - 0.994501

octave-3.0.3:8= # Calculate phase advance/cell mu for this FODO cell next

octave-3.0.3:8> mu=acos{real{lambda(1,1)))*360/ (2*pi)
mu = $3.990

Figure 6: A simple numerical FODO cell calculation in Octave.

	Google
	Mathematica
	Wolfram Alpha
	Generative AI
	yacas
	maxima
	Matlab
	Octave

