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16: Routes to Chaos

(perhaps yet another self-referential lecture)

Todd Satogata (Jefferson Lab and ODU) / satogata@jlab.org
Steve Peggs (BNL) / peggs@bnl.gov

Medani Sangroula (BNL) / msangroul@bnl.gov and Alex Coxe / alexcoxe@)jlab.org
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Happy birthday to Emilio Segre (1959 Nobel), Fritjof Capra, and Harry Styles!
appy National Baked Alaska Day, National Freedom Day, and Car Insurance Day!
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Review: 1D Beam-Beam
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D. Hofstadter: “... an eerie type of L] 7
chaos ... just behind a facade of A be parameter S0l ae
order — and yet, deep inside the / /

chaos lurks an even eerier type of Regular resonant Stochastic chaos
order.”
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Review: 1D Beam-Beam

* 1D beam-beam dynamics are surprisingly tractable

= Can predict where isolated resonances are located
» Steve’s lecture and lab 2

= Can predict other isolated resonance properties

* N-turn Hamiltonians give “island tunes”, resonance widths Flg 75
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Review: 1D Beam-Beam

* 1D beam-beam dynamics are surprisingly tractable

= Can predict where isolated resonances are located
» Steve’s lecture and lab 2

= Can predict other isolated resonance properties

* N-turn Hamiltonians give “island tunes”, resonance widths Flg 75
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: . . . ,  Can we predict the onset
of chaos, even roughly?
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16.1: Resonance overlap

» We have evaluated isolated resonances using the n-turn

action-angle Kobayashi Hamiltonian where @, — P«
n

H, = 21 (Qo— %) J + 20€U(J) — 27 Vi (J) cos(ne)
] \ J

V f — 2w€ Vi (J) cos(mo)
Small-amplitude  U”(J): detuning |
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“Isolated” resonances

0Scaled betatron amplitude x/c © @ EA
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& Fig 16.1: Resonance Overlap
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Higher Order “Isolated” Resonances
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Qo = 0.649

beam-beam parameter xi = 0.066
Clear plot Running
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http://toddsatogata.net/2024-USPAS/homework/BeamBeam2.html

Whoa, Wait a sec: ¢=0.2 could be stable?
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Beam-beam shifted tune, Q(a) = Qg+ U’
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Tune Diagram and Beam-Beam Tune Spread
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Table 3.3: EIC beam parameters for different center-of-mass energies /s, with strong hadron cooling. High divergence configuration.

(Some) EIC Parameters

Species proton electron | proton electron| proton electron| proton electron| proton electron
Energy [GeV] 275 18 275 10 100 10 100 5 41 5
CM energy [GeV] 140.7 104.9 63.2 44.7 28.6
Bunch intensity [10°] 19.1 6.2 6.9 17.2 6.9 17.2 4.8 17.2 2.6 13.3
No. of bunches 290 1160 1160 1160 1160

Beam current [A] 0.69 0.227 1 2.5 1 25 0.69 25 0.38 1.93
RMS norm. emit., h/v [um] 5.2/0.47 845/71 | 3.3/0.3 391/26 |3.2/0.29 391/26 |2.7/0.25 196/18 |1.9/0.45 196/34
RMS emittance, h/v [nm] 18/1.6 24/20 |11.3/1.0 20/1.3 | 30/2.7 20/1.3 | 26/2.3 20/1.8 | 44/10 20/3.5
B*, h/v [em]] 80/7.1 59/57 | 80/7.2 45/5.6 | 63/5.7 96/12 | 61/55 78/7.1 | 90/7.1 196/21.0
IP RMS beam size, h/v [pum] 119/11 95/8.5 138/12 125/11 198/27

Ky 11.1 11.1 11.1 11.1 7.3

RMS A6, h/v [prad] 150/150 202/187|119/119 211/152{220/220 145/105|206/206 160/160|220/380 101/129
BB parameter, h/v [1073] 3/3 93/100 | 12/12 72/100 | 12/12 72/100 | 14/14 100/100| 15/9  53/42
RMS long. emittance [10 =3, eV-s] 36 36 21 21 11

RMS bunch length [cm] 6 0.9 6 0.7 7 0.7 7 0.7 7.5 0.7
RMS Ap/p [107%] 6.8 10.9 6.8 5.8 9.7 5.8 9.7 6.8 10.3 6.8
Max. space charge 0.007 neglig. | 0.004 neglig. | 0.026 neglig. | 0.021 neglig. | 0.05  neglig.
Piwinski angle [rad] 6.3 2.1 7.9 2.4 6.3 1.8 7.0 2.0 4.2 1.1
Long. IBS time [h] 2.0 29 2.5 3.1 3.8

Transv. IBS time [h] 2.0 2 2.0/4.0 2.0/4.0 3.4/21
Hourglass factor H 0.91 0.94 0.90 0.88 0.93
Luminosity [103*cm =257 1] 1.54 10.00 448 3.68 0.44
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EIC Max Beam-Beam Parameters

Species proton electron
Energy [GeV] 100 5
CM energy [GeV] 447

BB parameter, h/v [107°]  14/14 100/100

Proton beam-beam: ¢=0.014
= Comparable to Tevatron p/pbar experience (¢=0.012)

Electron beam-beam: ¢=0.1

= Comparable to SuperKEK e- experience (e+ up to ¢=0.12)
Both are aggressive for an aggressive collider
HERA achieved (0.019,0.045) e-, (0.0012,0.0009) p

Useful updated exhaustive table of collider parameters (2022):
https://pdq.lbl.qov/2022/reviews/rpp2022-rev-hep-collider-params.pdf
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& Fig 16.1: Resonance Overlap
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16.1: Resonance overlap

= We evaluated isolated resonances using the n-turn action-
angle Kobayashi Hamiltonian where Qo — % < 1

H, = 21 (Qo— %) J + 20€U(J) — 27 Vi (J) cos(ne)

] \ J \ J
\ | |

Small-amplitude  U”(J): detuning  V,(J): resonance driving
frequency
= Convenient way to write equations of motion (tracking)

* Conserved quantity: phase space "KAM fori”

= Here we had assumed that all other resonances either
= have small V, (so their widths are small enough to ignore) or

= their Hamiltonian terms phase average to near zero over
many iterations of this map (over many turns)
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https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Arnold%E2%80%93Moser_theorem

16.1: Resonance overlap: Chirikov

= What happens when this assumption breaks down?
» Resonances approach the point of overlapping

= Separatrices are the first to interact

« But separatrices have infinite period and therefore are infinitely
vulnerable to perturbation

= Chirikov hypothesized that chaos emerges when nearby
resonance widths are large enough that they overlap

' -;f This is calculable and verifiable

g _A Universal Instability of Many-Dimensional Oscillator
. Systems” — Physics Reports 52 5, May 1979, pp. 263-379.

= 5000+ citations: a “famous” paper and surprisingly readable
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http://lptms.u-psud.fr/nicolas_pavloff/files/2010/03/chirikov1.pdf
http://lptms.u-psud.fr/nicolas_pavloff/files/2010/03/chirikov1.pdf
https://www.nature.com/news/the-top-100-papers-1.16224

16.1: Chirikov Overlap and the Standard Map
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RF motion
with large Qs!
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16.2: 6D Motion and Tune Modulation

= \We have been (understandably) rather naive
» This is a perfect 1D uncoupled nonlinear model

B'L
Ax' = x

» Reality (aside from noise) (Bp)

= Dispersion couples longitudinal and transverse motion

« Almost always have to bend the beam somewhere

« Off-center motion in quadrupoles also gives dipole “feed-down”
= Coupling couples transverse motion

* Quadrupoles have random rotations relative to design plane
= Sextupoles are necessary (mostly)

« Chromaticity correction in large accelerators

= Any coupling adds different frequencies to our system
= Tune modulation, e.9. Qg = Qoo + q sin(27Qst)
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16.2: Tune modulation

* The isolated resonance Kobayashi Hamiltonian was

H, = 2m (QO - %) J 4+ 2nEU(J) — 2wEV,(J) cos(no)
Qo = Qoo + ¢ sin(27Qst) \

= Modulation of the tune looks like a time-dependent driving
term

= Poincare and periodicity asides, large-N-turn maps

= To first order, the phase modulation also appears in the
resonance driving term!

» Phase-modulated pendulum: Mathieu equation
» Todd’s dissertation: hitp://www.toddsatogata.net/Thesis/
» Sidebands and sideband overlap leading to chaotic motion
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http://www.toddsatogata.net/Thesis/
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Figure 16.2 Simulated phase space structure due to one round beam-beam
kick of strength & = 0.0042 (a), and & = 0.006 (b), with the parameters of
Equation 16.19. The modest increase in £ moves the tune modulation side-
bands closer together, and dramatically broadens the chaotic sea, allowing

Qo = Qoo + ¢ sin(21Qst) q=0.001 Qs=0.00515
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Figure 15.4 Six island chains from the simulation of a single round beam-
beam interaction of strength £ = 0.0042 (a), and £ = 0.006 (b), with a base
tune of Qo = 0.331 [40]. The amplitude width of the islands increases as
the chain moves to a larger resonance amplitude when ¢ is increased. (See
also Figure 16.2.)
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Tune Modulation Frequency Scale

* Remember, tune modulation is really “just” modulating a
pendulum

= We know kicking around a pendulum near its natural
frequency produces excitement

= What is the natural frequency of resonant motion?

= Remember these are topologically equivalent to pendula
= “Island” tune: Q;<<Qqq

N (1
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Slow Tune Modulation: Amplitude Modulation

H, = 2m (QO - %) J 4+ 2nEU(J) — 2wE V,(J) cos(no)

Qo = Qoo + ¢ sin(27Q)st)

* |f modulation frequency is much lower than island tune

Qs < QI

» then the modulation really looks like a slow variation of Qq
= Nearly adiabatic with respect to the resonance “island” motion
= Amplitudes of resonances “breathe” up and down
= [sland widths also vary because their amplitudes are changing

= Conversely, modulation frequency >> island tune...
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Tune Modulation Diagram
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Figure 16.3 Dynamical zones universally predicted in normalised tune
modulation space (¢/Qr,Qn/Q1) for n = 6, with the boundaries defined
in Equation 16.23. The island tune )7, a scale factor on both axes, is a
parameter of central importance.
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Fun Phase Space Movies: Phase Modulation
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Fun Phase Space Movies: Above Resonance
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Fun Phase Space Movies: Below Resonance

q0=0.252 b3=0.500 gmod=0.00000 tmod=401

0.3 T .,‘,.owwnmm o//"t‘:::;\s
.o A Strong
0.2 k’)) — Chase sidebands
0.1 -
> 0.0 -
Amplitude Phase
|~ modulation modulation N
—-0.1 -
| |
0 /_ 2% 10" 10° 10’ 10?
. @ Tune modulation tune, Qar/Qr
_0.3 - B et en e ¢
-0.2 -0.1 0.0 0.1 0.2 0.3

@ @SA
T. Satogata / January 2024 USPAS Accelerator Physics 25



E778 Persistant Signal
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Figure 16.4 Turn-by-turn persistent signal data due to beam trapped in
an n = 5 resonance island in the nonlinear dynamics Tevatron experiment
E778 [47, 48]. The resonance is driven by sextupoles. Chirping the operating
point from the amplitude modulation zone into the chaos zone in Figure 16.3
destroys the resonance, and the persistent signal.
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Arnold Diffusion and Integrability

= This is still just 1.5
dimensionsl!!

= One dimension plus time

= |n more dimensions, particles
can move along resonance
lines and diffuse in tune space

* A mechanism for long-term
amplitude growth in tracking
and perhaps even reality

» Visualization makes my brain
hurt

Integrability class next door
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Lichtenberg and Lieberman, Jose and Saletan
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