USPAS Accelerator Physics 2024 Hampton VA / Northern Illinois University

16: Routes to Chaos

(perhaps yet another self-referential lecture)

Todd Satogata (Jefferson Lab and ODU) / satogata@jlab.org
Steve Peggs (BNL) / peggs@bnl.gov

Medani Sangroula (BNL) / <u>msangroul@bnl.gov</u> and Alex Coxe / <u>alexcoxe@jlab.org</u> <u>http://www.toddsatogata.net/2024-USPAS</u>

Happy birthday to Emilio Segre (1959 Nobel), Fritjof Capra, and Harry Styles! Happy National Baked Alaska Day, National Freedom Day, and Car Insurance Day!

Review: 1D Beam-Beam

D. Hofstadter: "... an eerie type of chaos ... just behind a facade of order – and yet, deep inside the chaos lurks an even eerier type of order."

Review: 1D Beam-Beam

- 1D beam-beam dynamics are surprisingly tractable
 - Can predict where **isolated** resonances are located
 - Steve's lecture and lab 2
 - Can predict other isolated resonance properties
 - N-turn Hamiltonians give "island tunes", resonance widths

Scaled betatron amplitude x/σ

Review: 1D Beam-Beam

- 1D beam-beam dynamics are surprisingly tractable
 - Can predict where **isolated** resonances are located
 - Steve's lecture and lab 2
 - Can predict other isolated resonance properties
 - N-turn Hamiltonians give "island tunes", resonance widths

Scaled betatron amplitude x/σ

16.1: Resonance overlap

• We have evaluated isolated resonances using the n-turn action-angle Kobayashi Hamiltonian where $Q_0 - \frac{p}{n} \ll 1$

$$H_n = 2\pi \left(Q_0 - \frac{p}{n}\right)J + 2\pi \xi U(J) - 2\pi \xi V_n(J)\cos(n\phi)$$

$$-2\pi \xi V_m(J)\cos(m\phi)$$

Small-amplitude U"(J): detuning

⁰ Scaled betatron amplitude x/σ ⁶

T. Satogata / January 2024

USPAS Accelerator Physics

Higher Order "Isolated" Resonances

http://toddsatogata.net/2024-USPAS/homework/BeamBeam2.html

Whoa, Wait a sec: ξ =0.2 could be stable?

Tune Diagram and Beam-Beam Tune Spread

(Some) EIC Parameters

Table 3.3: EIC beam parameters for different center-of-mass energies \sqrt{s} , with strong hadron cooling. High divergence configuration.

Species	proton	electron								
Energy [GeV]	275	18	275	10	100	10	100	5	41	5
CM energy [GeV]	140.7		104.9		63.2		44.7		28.6	
Bunch intensity [10 ¹⁰]	19.1	6.2	6.9	17.2	6.9	17.2	4.8	17.2	2.6	13.3
No. of bunches	290		1160		1160		1160		1160	
Beam current [A]	0.69	0.227	1	2.5	1	2.5	0.69	2.5	0.38	1.93
RMS norm. emit., h/v [μ m]	5.2/0.47	845/71	3.3/0.3	391/26	3.2/0.29	391/26	2.7/0.25	196/18	1.9/0.45	196/34
RMS emittance, h/v [nm]	18/1.6	24/2.0	11.3/1.0	20/1.3	30/2.7	20/1.3	26/2.3	20/1.8	44/10	20/3.5
β^* , h/v [cm]]	80/7.1	59/5.7	80/7.2	45/5.6	63/5.7	96/12	61/5.5	78/7.1	90/7.1	196/21.0
IP RMS beam size, h/v [μm]	119/11		95/8.5		138/12		125/11		198/27	
K_{x}	11.1		11.1		11.1		11.1		7.3	
RMS $\Delta\theta$, h/v [µrad]	150/150	202/187	119/119	211/152	220/220	145/105	206/206	160/160	220/380	101/129
BB parameter, h/v [10^{-3}]	3/3	93/100	12/12	72/100	12/12	72/100	14/14	100/100	15/9	53/42
RMS long. emittance $[10^{-3}, eV \cdot s]$	36		36		21		21		11	
RMS bunch length [cm]	6	0.9	6	0.7	7	0.7	7	0.7	7.5	0.7
RMS $\Delta p / p [10^{-4}]$	6.8	10.9	6.8	5.8	9.7	5.8	9.7	6.8	10.3	6.8
Max. space charge	0.007	neglig.	0.004	neglig.	0.026	neglig.	0.021	neglig.	0.05	neglig.
Piwinski angle [rad]	6.3	2.1	7.9	2.4	6.3	1.8	7.0	2.0	4.2	1.1
Long. IBS time [h]	2.0		2.9		2.5		3.1		3.8	
Transv. IBS time [h]	2.0		2		2.0/4.0		2.0/4.0		3.4/2.1	
Hourglass factor H	0.91		0.94		0.90		0.88		0.93	
Luminosity $[10^{33} \text{cm}^{-2} \text{s}^{-1}]$	1.	54	10	.00	4.	48	3.	68	0.	.44

EIC Max Beam-Beam Parameters

Species	proton	electron	
Energy [GeV]	100	5	
CM energy [GeV]	44.7		
BB parameter, h/v [10^{-3}]	14/14	100/100	

- Proton beam-beam: ξ=0.014
 - Comparable to Tevatron p/pbar experience (ξ=0.012)
- Electron beam-beam: ξ=0.1
 - Comparable to SuperKEK e- experience (e+ up to ξ=0.12)
- Both are aggressive for an aggressive collider
- HERA achieved (0.019,0.045) e-, (0.0012,0.0009) p

Useful updated exhaustive table of collider parameters (2022): https://pdg.lbl.gov/2022/reviews/rpp2022-rev-hep-collider-params.pdf

16.1: Resonance overlap

• We evaluated isolated resonances using the n-turn actionangle Kobayashi Hamiltonian where $Q_0 - \frac{p}{n} \ll 1$

$$H_n = 2\pi \left(Q_0 - \frac{p}{n}\right)J + 2\pi \xi U(J) - 2\pi \xi V_n(J)\cos(n\phi)$$

Small-amplitude U''(J): detuning $V_n(J)$: resonance driving frequency

- Convenient way to write equations of motion (tracking)
 - Conserved quantity: phase space <u>"KAM tori"</u>
- Here we had assumed that all other resonances either
 - have small V_n (so their widths are small enough to ignore) or
 - their Hamiltonian terms phase average to near zero over many iterations of this map (over many turns)

16.1: Resonance overlap: Chirikov

- What happens when this assumption breaks down?
 - Resonances approach the point of overlapping
 - Separatrices are the first to interact
 - But separatrices have infinite period and therefore are infinitely vulnerable to perturbation
- Chirikov hypothesized that chaos emerges when nearby resonance widths are large enough that they overlap
 - This is calculable and verifiable
 - "A Universal Instability of Many-Dimensional Oscillator Systems" – Physics Reports **52** 5, May 1979, pp. 263-379.
 - 5000+ citations: a "famous" paper and surprisingly readable

16.1: Chirikov Overlap and the Standard Map

Chaotic resonance overlap: \(\) separatrix becomes chaotic

RF motion with large Qs!

Difference map

16.2: 6D Motion and Tune Modulation

- We have been (understandably) rather naive
 - This is a perfect 1D uncoupled nonlinear model
- Reality (aside from noise)

$$\Delta x' = \frac{B'L}{(B\rho)}x$$

- Dispersion couples longitudinal and transverse motion
 - Almost always have to bend the beam somewhere
 - Off-center motion in quadrupoles also gives dipole "feed-down"
- Coupling couples transverse motion
 - Quadrupoles have random rotations relative to design plane
- Sextupoles are necessary (mostly)
 - Chromaticity correction in large accelerators
- Any coupling adds different frequencies to our system
 - Tune modulation, e.g. $Q_0 = Q_{00} + q \, \sin(2\pi Q_s t)$

16.2: Tune modulation

The isolated resonance Kobayashi Hamiltonian was

$$H_n = 2\pi \left(Q_0 - \frac{p}{n}\right)J + 2\pi\xi U(J) - 2\pi\xi V_n(J)\cos(n\phi)$$

$$Q_0 = Q_{00} + q\sin(2\pi Q_s t)$$

- Modulation of the tune looks like a time-dependent driving term
 - Poincare and periodicity asides, large-N-turn maps
- To first order, the phase modulation also appears in the resonance driving term!
 - Phase-modulated pendulum: Mathieu equation
 - Todd's dissertation: http://www.toddsatogata.net/Thesis/
 - Sidebands and sideband overlap leading to chaotic motion

Amplitude, a/σ

Amplitude, a/σ

Figure 16.2 Simulated phase space structure due to one round beam-beam kick of strength $\xi = 0.0042$ (a), and $\xi = 0.006$ (b), with the parameters of Equation 16.19. The modest increase in ξ moves the tune modulation sidebands closer together, and dramatically broadens the chaotic sea, allowing

$$Q_0 = Q_{00} + q \sin(2\pi Q_s t)$$
 q = 0.001 Qs=0.00515

Figure 15.4 Six island chains from the simulation of a single round beam-beam interaction of strength $\xi = 0.0042$ (a), and $\xi = 0.006$ (b), with a base tune of $Q_0 = 0.331$ [40]. The amplitude width of the islands increases as the chain moves to a larger resonance amplitude when ξ is increased. (See also Figure 16.2.)

Tune Modulation Frequency Scale

- Remember, tune modulation is really "just" modulating a pendulum
 - We know kicking around a pendulum near its natural frequency produces excitement
 - What is the natural frequency of resonant motion?
 - Remember these are topologically equivalent to pendula
 - "Island" tune: Q_I<<Q₀₀

Slow Tune Modulation: Amplitude Modulation

$$H_n = 2\pi \left(Q_0 - \frac{p}{n} \right) J + 2\pi \xi U(J) - 2\pi \xi V_n(J) \cos(n\phi)$$
$$Q_0 = Q_{00} + q \sin(2\pi Q_s t)$$

If modulation frequency is much lower than island tune

$$Q_s \ll Q_I$$

- then the modulation really looks like a slow variation of Q₀
 - Nearly adiabatic with respect to the resonance "island" motion
 - Amplitudes of resonances "breathe" up and down
 - Island widths also vary because their amplitudes are changing
- Conversely, modulation frequency >> island tune...

Tune Modulation Diagram

Tune modulation normalized frequency, Q_M/Q_I

Figure 16.3 Dynamical zones universally predicted in normalised tune modulation space $(q/Q_I, Q_M/Q_I)$ for n = 6, with the boundaries defined in Equation 16.23. The island tune Q_I , a scale factor on both axes, is a parameter of central importance.

Fun Phase Space Movies: Phase Modulation

Fun Phase Space Movies: Above Resonance

Fun Phase Space Movies: Below Resonance

E778 Persistant Signal

Figure 16.4 Turn-by-turn persistent signal data due to beam trapped in an n=5 resonance island in the nonlinear dynamics Tevatron experiment E778 [47, 48]. The resonance is driven by sextupoles. Chirping the operating point from the *amplitude modulation* zone into the *chaos* zone in Figure 16.3 destroys the resonance, and the persistent signal.

Arnold Diffusion and Integrability

- This is still just 1.5 dimensions!!
 - One dimension plus time
- In more dimensions, particles can move along resonance lines and diffuse in tune space
- A mechanism for long-term amplitude growth in tracking and perhaps even reality
- Visualization makes my brain hurt
- Integrability class next door

Lichtenberg and Lieberman, Jose and Saletan

