CHAPTER 2
ACCELERATOR PHYSICS FUNDAMENTALS

This chapter describes the coordinate systems and magnet strength definitions
used in the remainder of this thesis. Because a thorough background in accelera-
tor physics is not assumed and definitions used by various researchers within the
field typically vary, aspects of the field are also discussed here that are relevant to
the remainder of this work. In § 2.1 the local transverse coordinate system used
to expand transverse motion in a synchrotron is described, as well as the defini-
tions of both linear and nonlinear magnet strengths. In § 2.2 the transverse linear
dynamics of a strong-focusing synchrotron are discussed. In § 2.3 the discrete
Hamiltonian formalism that will be used to investigate the nonlinear dynamics
of this system is introduced, and the forms of generating functions and transfor-
mations that will be applied to the discrete Hamiltonian in Chapters 3 and 4 are
described; § 2.4 returns to investigate the longitudinal motion in a synchrotron
and how this motion couples to the transverse dimension.

Table (2.1) lists typical values of many quantities relevant to accelerator oper-
ations at the Tevatron collider, the Indiana University Cyclotron Facility (IUCF)
cooling ring and the SSC collider. Many of these quantities are not mentioned

here in detail, but are listed for completeness.

2.1 ACCELERATOR COORDINATE SYSTEMS

Typically the equilibrium orbit, or closed orbit, around a synchrotron can be
approximated as a circle with a constant radius p — this is equivalent to stating
that the accelerator approximately consists of nothing but dipole magnets, ignor-
ing the effects of vertical bends and long straight sections. (For example, 75% of

the Fermilab Tevatron and 80% of the Fermilab Booster circumferences consist
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Parameter Symbol FNAL IUCF SSC
(units) Tev Cooler Collider
Horizontal Tune Q. 20.586 3.82 123.28
Vertical Tune Qy 20.575 4.85 123.78
Synchrotron Tune Qs 5.7-107% 5-107% 1.2-1073
Revolution Freq. freo (kHz) 47.7 103 3.4
Minimum Beta p* (m) 0.5 1 1
Maximum Beta Brmaz (M) 200 50 8103
Dispersion (ave.) n (m) 0.5 0.2 1
Momentum Spread op/p 2.1074 4-107° 1074
Kinetic Energy E (GeV) 900 0.045 2. 10*
Rigidity \Bp| (T-m) | 3-10° 3.6 710
Bend Radius p (m) 7.5-102 1.2 1.0-10*

Table 2.1: Various operational accelerator parameters for the Fermilab
Tevatron collider (1993 collider lattice), the IUCF cooling storage ring
and the SSC collider (Design Report). For the colliders the values given
refer to a single beam.

of dipole magnets.) All transverse motion is expanded in the transverse displace-
ments from this equilibrium closed orbit, with & being defined in the outward
radial direction. The direction of beam travel on the closed orbit is defined as
§, always tangential to the closed orbit; then § = —& x § and the triplet (2,9, §)
forms a right-handed coordinate system. This agrees with the convention used
in the MAD 8.1 and TEAPOT lattice design and tracking programs (Grote and
Iselin 1990, Schachinger and Talman 1985), as well as that of Edwards and Syphers
(Edwards and Syphers 1987).

In such a coordinate system, the magnetic dipole bending field By for a pos-
itively charged particle is oriented in the +¢ direction; this makes it natural to
speak of a field error as being positive if it points in this direction. For a typical
proton synchrotron with normal temperature dipoles this magnetic field can be

as high as 2 Tesla; with superconducting dipoles such as those used in RHIC, the



Figure 2.1: The local coordinate system in a synchrotron.

CERN LHC, the Tevatron and the SSC, By can be as high as 6.6 Tesla. Magnetic

fields and field errors can now be analytically expanded by

(. @)

iAB, + ABy =By Y (bn +iay)(x +iy)" . (2.1)

n=0

where the b,, denote multipole strengths of normal field components and the a,,
denote multipole skew field components. The units of these multipole strengths
are m™", and the strengths themselves range from .3 m =2 for sextupole correctors
in the Tevatron to approximately 107 m ™" for higher order multipole errors from
fringe fields or magnet coil misalignments.

This field expansion agrees with the multipole strength conventions used in
TEAPOT, but does not agree with the conventions used by MAD 8.1, which
instead uses a Taylor expansion for the magnetic field on the midplane of the
magnet, y = 0. A comparison of the two definitions for normal multipole strengths

gives the relationship

_ B,(MAD) 1 [0"B
by(thesis) = b,(TEAPOT) = = . : 2.2
(thesis) ( ) 1 Be 7By ( D )y:O (2.2)

Typically magnetic multipole strengths are measured from angular fourier analysis
of field strengths for a distribution of angular positions at a constant radius from
the magnet center bore.

In this dissertation we make the normally realistic approximation that kicks

from nonlinear magnetic fields are small and applied over a negligible magnet
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length L, or that the transverse momentum change from the nonlinearity is small
compared to the total momentum of the kicked particle. The following discussion
is therefore only relevant for kicks applied over short distances such as those
from dipole fringe fields, quadrupoles and correctors; it does not trivially apply
to multipole errors within long dipoles. The small-amplitude kicks over a short

multipole are given by

L L

Az’ =
Here |Bp| is the magnetic rigidity, related to the particle’s total momentum p
and charge e by |Bp| = p/e; units are such that |Bp| ~ 3.3357pc for a particle

with electron or proton charge when pe is expressed in GeV and Bp in T-m. The

prime denotes differentiation with respect to the longitudinal coordinate s, so

x' = dx/ds. We then have

. ByL . .
Az —iAy = — |BO,0| Z(b" +iay)(x +y)" . (2.4)
n=0

For the n = 0 case (the primary dipole bending field) by = 1 in the horizontal
plane and the quantity BoL/|Bp| is the bend angle for each main dipole.

In the case of a normal quadrupole, for example, n = 1 and

B, L
|Bp|

Az —iAy' = bi(x +y) . (2.5)

For a positive normal quadrupole strength b; a particle displaced positively in
the & direction receives a negative (focusing) kick. In the ¢ direction, however, a
positively displaced particle is given a positive (defocusing) kick.

In this thesis dispersive effects are ignored except for a few comments about
sources of beta modulation in Chapter 4 — particle energies are held constant and
there is no variation in the rigidity |Bp| which affects relative field strengths. For

simplicity in the notation we therefore absorb the leading term (the dipole bend
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angle) into the multipole strength terms and rewrite the multipole kick expansion

(2.4) as

A’ =iy == (by +idn)(x +iy)" (2.6)

n=1

where (b,d), = (b,a),BoL/|Bp|. These are called the normalized multipole

strengths and have the units m™".

2.2 TRANSVERSE LINEAR MOTION IN A SYNCHROTRON

By far the most influential paper in accelerator physics has been that of Couran-
t and Snyder (1958), which laid the foundations for much of the field. There
the transverse linear motion near the closed orbit of an alternating-gradient syn-
chrotron was shown to be parameterized by a pair of quantities, 5(s) and «a(s) =
—/'(s)/2, for each transverse plane of oscillation. With the dispersion function
n(s) (see Equation (2.33)) these parameters are commonly referred to as the lattice
functions of the accelerator.

The “beta function” (s) has units of length — it ranges from approximately
half a meter to 200 meters in the Tevatron collider lattice. As will be shown
shortly, the amplitude of transverse particle oscillations scales with m in
motion around the accelerator. At the interaction regions of many colliders, a
low-beta insertion is designed to lower the beta function at the beam crossing
point, thus reducing the actual beam size and increasing the luminosity.

Motion of particles in the two transverse planes is coupled even in the lin-
ear approximation by a variety of perturbations such as longitudinal solenoidal
fields from experimental detectors, normal dipole and quadrupole rotation errors,
vertical dipole bends and deliberately installed skew quadrupoles. With the as-
sumption that the accelerator under consideration is flat and that there are no

significant solenoidal fields, this coupling is usually small and treated perturba-
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tively. Such a treatment is followed in this thesis, and allows the linear motion in
each of the transverse planes to be treated as independent.

In either transverse dimension the motion of a particle through the straight drift

sections, dipoles and quadrupoles of a synchrotron is described by Hill’s equation,
:1;”(3) + K(s)x(s) =0, (2.7)

where K (s) the focusing strength in that plane, piecewise continuous and periodic
over one revolution of the machine. If the synchrotron has a superperiodicity, K (s)
naturally also has this superperiodicity — however, this symmetry is normally
broken by low-beta insertions or other practical necessities.

Because Hill’s equation is so similar to the equation of motion of a harmonic
oscillator, it is typically solved by substituting a harmonic solution where both

the amplitude and phase depend on s:
x(s) = /2J5(s)cosp(s)
= a(s)cos(s) .

The choice of normalization here is motivated by transformations derived in the

(2.8)

next section, where J is shown to be the action canonical to the phase ¢ (s).

Substitution of this ansatz into Equation (2.7) gives two differential relations for

6(s) and B(s):

sy =0, (2.9)
23" 3 — (B')? —4p%(¢')* +4B8°K(s) = 0. (2.10)

Equation (2.9) can be integrated immediately, using the standard convention that

chooses the constant of integration as one, to find the integrated phase,

*dS

P(s) = 39 (2.11)
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Similarly the phase advance over any section of the ring (s1,s2) can be defined:

2 S
A¢:L1a§. (2.12)

With this ¢', Equation (2.10) for the betatron function 3(s) takes the standard

forms:

28— () AP E(s) =4
1+a'f+a?= ﬂzK(s) )

With periodic boundary conditions and piecewise continuous K(s) this equation

(2.13)

can be solved numerically to give the betatron function § as a function of s.
The tune @ in each plane is defined as the long-term average number of trans-
verse betatron oscillations executed in that plane in each traversal of the ring, or
the average transverse oscillation frequency divided by the revolution frequency
of the machine. It is found in the linear approximation by taking the total phase

advance over one traversal and dividing by 27:
Q= iyde/ﬁ(S) . (2.14)
27
Generally the solution to any linear second-order differential equation such as
Equation (2.7) is uniquely determined by the initial conditions of @ and 2. It has
been shown (Courant and Snyder 1958) that the linear motion in each plane over

any section (s1,s3) of the ring can be completely described by

<$>2:A@1<$>1, (2.15)

\/%(cos A + aq sin Ay) V312 sin Ay

—(14aias) Sinjz’l—ﬂiw—al)COSAw %(cos At — g sin A@Z’)

where

My, = (2.16)

The same mapping also holds for motion in the y plane, using lattice functions

and phase advances there. The linear transformation matrix My, is a combination
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of rotations and scalings which map the particles around a rotation on an ellipse
in the phase space (x,2'); it is unwieldy in this basis because the parameters /3
and ¢ are more natural for a circular coordinate system as will be shown in the
next section.

The transformation matrix My is actually a concatenation of several individual
transformation matrices which can be found by solving simpler versions of Hill’s
equation. For the case where K is zero, as is true in straight drift sections and

approximately true in dipoles of length L.

My (K = 0) = <(1) {J) . (2.17)
For the case where K is a nonzero constant, as in a quadrupole of length L,

cos(LVK) ﬁ sin(LVE) ) ‘

(2.18)
—VEKsin(LVEK)  cos(LVE)

M51(K = constant) = (

Keeping the integrated magnet strength KL = b; constant while taking the thin
magnet limit L — 0 here gives the transformation matrix of a thin horizontal

quadrupole kick,
M1 (thin quad) = (—1b~1 (1)> . (2.19)

Since a horizontally focusing quadrupole defocuses equally in the vertical direction
(see Equation (2.5)), reversing the sign of by in the above mapping gives the
corresponding thin quadrupole kick in the vertical plane.

For the subjects examined in this dissertation, motion is only observed once per
accelerator turn in a Poincaré surface of section; in this approach, the transverse
phase space is observed in discrete time steps instead of continuously around the
ring. This method of visualization is more practical in application, because beam
position monitors and other diagnostic equipment measure beam properties on

a turn-by-turn basis. The longitudinal coordinate s is transformed to an integer
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Figure 2.2: The phase space ellipse transformation (2.23) from phys-
ical transverse coordinates (x, ') to normalized transverse coordinates
(xn,2'y). The physical amplitude of betatron oscillations at a point with

beta function 3 is a = /2J 3.

turn-number coordinate t = [s/27p] so the mapping represented by Equation-

s (2.15) and (2.16) now becomes a “one-turn map”:

<§,>t+1:M<§,>t : (2.20)

where the linear one-turn transformation matrix is

(cos(27rQ) + asin(27Q) Bsin(27Q) )
M =

_ (1+4a? (2.21)

T) sin(27Q) cos(27Q)) — a sin(27Q)
and the lattice functions # and « are those of the observation point. It is also
interesting to note that imposing a small thin quadrupole kick on the one-turn
map gives the tune shift associated with a quadrupole error of strength by as

n by B(quad)

AQ; y(quad) = = \ (2.22)

with the positive sign referring to the horizontal plane and the negative to the

vertical.
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Figure 2.3: Seven turns of a linear one-dimensional turn-by-turn Poincaré
plot in normalized coordinates (zy, '), with tune ¢ = .57 near the
4@) = 7 resonance. This is simulation of a single particle following the
linear one-turn map of Equation (2.20); each successive point lies on a
circular contour.

A coordinate transformation exists that transforms the elliptical mapping of
Equation (2.21) into a circular one, so that linear motion consists of a rota-

tion around this circle. One transformation to these “normalized coordinates”

(zn,z'y) is given by

afs) i | (2.23)

Both zx and 'y have units of m/? as do all distances in the normalized coor-
dinate system. After this transformation both M, and M become pure rotation
matrices, rotating in the clockwise direction in the (@, 2y ) plane by angles of A
and 27 (Q) respectively. Both a and 3 are functions of the longitudinal coordinate
s, but due to the periodicity of the lattice functions they are independent of ¢t and

thus so is the one-turn mapping.
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Because linear phase space motion is nothing more than a rotation, if the ro-
tation angle is a rational multiple of 27 (or the tune @ is rational), the particle
returns to the same phase space position in some number of turns. A perturbation
at a particular location in the accelerator having the same periodicity in the phase
angle will always kick the particle in the same way, possibly creating amplitude
growth, luminosity degradation and particle loss. Generalizing to both transverse
dimensions, the resonance condition on the horizontal and vertical tunes is given
by
JQe +kQy =1, (2.24)
where j, k and [ are integers. The perturbations mentioned above, periodic in
the phase, drive these resonances — they are caused by nonlinear forces such as
nonlinear magnet errors and magnetic forces felt by particles comprising colliding
beams (the beam-beam force). Following (2.24), resonances have nonlinear kicks

with a phase dependence cos(ji, + kiby ).

2.3 GENERATING FUNCTIONS AND CANONICAL TRANSFORMATIONS

Hill’s equation, Equation (2.7), is also the equation of motion for a harmonic os-
cillator with a time-dependent restoring force and no damping. A nonautonomous

Hamiltonian can be written for such an oscillator:

2 1’2

H(z,ps;s) = % + K5 (2.25)

where p, is the canonical momentum associated with the position x. Application
of Hamilton’s equations immediately gives p, = ', so the coordinate z' is the
canonical conjugate of the position x. This Hamiltonian can be canonically trans-
formed to the form of an action-angle harmonic oscillator with the time-dependent

type 1 generating function (Goldstein 1980, Chapter 9):

1}2

Gl '] = [0 7)) = =50 [an (s) )] (2.26)
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This nontrivially produces the coordinate transformations and new Hamiltonian

x=+/2Jcos(s)

o = /IR (s) + a(s)costi(s)] . (227
H(, J;s) = H(z,2';s) + dj; = ﬂ(Js) .

This is exactly the same as the harmonic solution, Equation (2.8), of Hill’s e-

quation mentioned previously, but this approach also identifies the appropriate
canonical coordinates for a Hamiltonian analysis of the linear problem.

Motion will be expressed in a “discrete” Hamiltonian formalism throughout
this thesis, where one-turn and N-turn maps similar to the linear map of Equa-
tion (2.20) are generated from the discrete Hamiltonian H and the corresponding

discrete forms of Hamilton’s equations:

Az y OH Azly OH
= = — . 2.2
At ox'y ’ At drn (2.28)

The linear one-turn motion over the ring is reproduced if the linear Hamiltonian
(2.27) is integrated over one ring revolution. Then the discrete Hamiltonian and
one-turn discrete equations of motion for the canonical coordinates (v, .J) are:
Hi(16,7) = 22Q .
Ay =270, (2.29)
AJ=0.
Since the beta function is periodic around the ring, the linear one-turn Hamilto-
nian H, is independent of turn number if the tune of the synchrotron is constant.
In order for the discrete forms of Hamilton’s equation to retain their form when
coordinate transformations are applied to the Hamiltonian, it is necessary and
sufficient to require these transformations to be canonical. In this dissertation

a variety of (possibly time-dependent) generating functions are used to gener-

ate these canonical transformations (Goldstein 1980, Landau and Lifshitz 1975).
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Figure 2.4: The generating function mnemonic square. The generat-
ing functions G; are functions of the coordinates that bracket them, and
partial derivatives in the direction of the arrows are positive. The Hamil-
tonian is also changed by an amount dG;/dt in the transformation, if the
generating function is time-dependent.

There are four common types of canonical transformations from coordinates (¢, p)
to (@, P), imaginatively named type 1 through type 4. For example, the type 1
generating function used above depends only on the old and new coordinates ¢

and (), not on the momenta p and P; it gives the transformation equations

_ 9&1(9, @)
P=""p, :
_ aGl(QvQ;t)
P=-— - (2.30)
H(q,p;t) — H(Q,P;T) + W .

The four types of generating functions and their respective transformation equa-
tions may be conveniently summarized using a mnemonic square similar to that
used in thermodynamics, as shown in Figure (2.4). All linear transformation-
s, time dependent or not, are canonical — when these are used the coordinate
transformations will be stated for clarity. Other types of canonical transforma-
tions applied here are stated explicitly by their generating functions.

At several places in this thesis, discrete Hamiltonia are “integrated” (or, more
properly, summed) to give equations of motion over timescales of N turns, where
N is an integer. This requires rescaling the time coordinate; however the product

of the Lagrange action and time used to derive Hamilton’s equations from a least-
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action principle (Goldstein 1980, p. 364),
dC = [pg — H(p, ¢)]dt , (2.31)

remains invariant under this transformation if the Hamiltonian is scaled to suit
the time change. Since this is implicit in the summation process, the only change
necessary for such a transformation to respect the difference forms of Hamilton’s

equations is the rescaling of the time coordinate, t — Nt =T

2.4 LONGITUDINAL MOTION AND CHROMATICITY

In the context of the stability of transverse motion, longitudinal dynamics are
important because they provide a mechanism for tune modulation to exist in every
machine which uses RF systems to longitudinally stabilize and accelerate particle
beams. The parameter used to quantify the coupling of the fractional momentum
offset to the transverse tune in each plane is called the chromaticity &;; it is defined
by

AQi =& 6 (2.32)

in each plane. Here 6 = Ap/py is the fractional momentum offset from the ideal
design momentum py. European convention differs significantly in definition of
the chromaticity, using the fractional tune shift AQ/Q instead of AQ. Chro-
matic effects arise from the momentum dependence of the focusing strength of
quadrupoles — if a particle has a larger energy than the design energy, it is fo-
cused less strongly and executes a smaller number of betatron oscillations in one
machine revolution. For a simple uncorrected alternating-gradient synchrotron
the chromaticity is roughly equal in magnitude and opposite in sign to the tune.

For most machines such a large net chromaticity is undesirable, as particles with
even small fractional momentum offsets can experience tune shifts large enough

to shift them onto undesirable resonances. Chromaticity is adjusted with the
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addition of correction sextupoles at points of nonzero dispersion in each plane,
since dispersion is the coupling between momentum offset and transverse position;

for example, horizontal dispersion gives

z(total) = x(closed orbit) 4+ 7795% : (2.33)

Po
Examining Equation (2.6) for a normal sextupole (n = 2) and including the effect
of dispersion in the horizontal plane to first order in momentum offset, we find that
sextupoles give kicks linear in displacement, or momentum-dependent quadrupole
kicks:
roA 1 N2 Ap .
Az’ — 1Ay = —by |(x + 1y)° + 2?7795(:1; + )| - (2.34)

For maximum efficiency a normal chromaticity correction sextupole would be
placed at a point with high horizontal dispersion. Using the tune shift from a
quadrupole kick, Equation (2.22), one can immediately find the contribution to

the total chromaticity from a distribution of normal sextupoles:

o= 5o D malsi)Balsi (o)
) ' ) (2.35)
§y = —527790(81‘)5;/(81‘)52(81‘) :

It is also important to note that though sextupoles can correct the chromaticity,
they also introduce nonlinear kicks and transverse coupling.

Particles with momentum offsets subject to RF focusing also execute syn-
chrotron oscillations, where 6 is not constant but varies sinusoidally as though
it were being modulated. Although investigation of the longitudinal phase space
of a particle is complicated (Edwards and Syphers 1987, chapter 2), for longi-
tudinal beam distributions much smaller than the RF bucket size it is a good
approximation that all particles have their momentum offsets oscillating at the

same frequency, the synchrotron frequency Js. In the absence of explicit tune
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modulation (as was used in E778) and strong power supply ripple, this is the
source of tune modulation that motivates the long-term stability inquiries raised

in later chapters.



