
CHAPTER 3NONLINEAR RESONANCE ISLANDS ANDONE{DIMENSIONAL PERSISTENT SIGNALSIn this chapter a discrete Hamiltonian approach to two-dimensional transversenonlinear resonances is presented that gives perturbative results exact to �rst or-der in nonlinear magnet strength. One-turn and N-turn Hamiltonians are derivedfrom a projection map (Peggs 1982) in x 3.1-2 respectively; these Hamiltonians canbe considered to respectively generate the one-turn and N-turn Poincar�e surfaceof section maps. Certain phase space structures, called \resonance islands", canappear with one-dimensional resonant motion as pictured in Figure (3.1). Thesestructures are shown to be parameterized by several experimentally accessiblequantities including the island tune, QI, in x 3.3; a computational single particletracking simulation is described in x 3.4 and compared to theoretical prediction forthe 5Qx resonance. Various methods used to experimentally investigate nonlinearresonance islands are discussed in x 3.5, in particular those used in experimentCE22 at the IUCF Cooling Ring and for this thesis in experiment E778 at Fermi-lab. 3.1 THE FIRST ORDER NONLINEAR ONE{TURN HAMILTONIANIn the previous chapter the action-angle parameterization was presented for theuncoupled linear transverse one-turn particle motion in a synchrotron. The nextissue is how to include the e�ects of nonlinear magnets to form a discrete Hamilto-nian that more adequately describes motion in a real accelerator. A perturbativeapproach that is correct to �rst order in nonlinear magnet strengths is used here;however, there exist a multitude of other methods, both perturbative (Miche-lotti 1986a) and non-perturbative (Gabella 1991), that give similarly-structured21
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IFigure 3.1: Isolated 5Qx resonance islands in various phase space coor-dinate systems. Data is taken from simulation and tracking using theoctupole/decapole lattice described in Section 3.4, which drives the res-onance seen here to �rst order in decapole strength.



23Hamiltonians.Consider a synchrotron with a single thin nonlinearity of normalized strength~bn, where n represents the order of the nonlinearity. Transverse single-particlemotion around the ring consists of three parts: a linear phase advance to thenonlinearity, the nonlinear kick and another linear phase advance back to thestarting point. Since the linear portion of this motion is already well-described bythe Hamiltonian of the previous chapter, it is removed here by a reverse rotationthrough the ring while ignoring the nonlinearity. This has the e�ect of projectingthe kick at the phase advance of the nonlinearity to a nonlinear one-turn map ofthe initial particle coordinates.Denote the horizontal and vertical phase advances at the location of the non-linearity by (�nl;x; �nl;y) (as measured from a reference point) and the linear betafunctions by (�nl;x; �nl;y). The nonlinear kicks at this location in normalized co-ordinates are then given by substitution the of normalized coordinate de�nitionsinto the nonlinear kick expansion, Equation (2.6):�x0N = �~bn n=2Xk=0� n2k�(�1)k� n+12 �knl;x xn�2kN �knl;y y2kN ;�y0N = ~bn n=2�1Xk=0 � n2k + 1�(�1)k� n�12 �knl;x xn�2k�1N �k+1nl;y y2k+1N : (3:1)This nonlinearity is a perturbation at a particular phase advance within themachine. To quantify this consider the \projection mapping":0BB@�xN�x0N�yN�y0N 1CCA = R�1(�nl;x; �nl;y)�KxKy �R(�nl;x; �nl;y)0BB@ xNx0NyNy0N 1CCA (3:2)where R is the 4� 4 block diagonal linear rotation matrixR(�x; �y) �0B@ cos�x sin�x 0 0� sin�x cos�x 0 00 0 cos�y sin�y0 0 � sin�y cos�y1CA (3:3)
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R-1(φx,nl, φy,nl)Figure 3.2: A simple lattice for the projection of a nonlinear kick onto amapping of initial particle coordinates.and the Ki symbolize the nonlinear kicks (3.1) in each plane. This accuratelyaccounts for the nonlinear motion | the linear portion of the motion has beenremoved by the inverse rotation R�1.If x0N is the canonical momentum for x, the mapping of Equation (3.2) is actuallyintegrable. A discrete one-turn nonlinear Hamiltonian H1;nl(xN ; x0N ; yN ; y0N) canbe written such that discrete forms of Hamilton's equations are obeyed as in theprevious chapter: 0BB@�xN�x0N�yN�y0N 1CCA = 0BB@ @H1;nl=@x0N� @H1;nl=@xN@H1;nl=@y0N� @H1;nl=@yN 1CCA : (3:4)The Hamiltonian can be written in these coordinates but it is much more mean-ingful to write it in action-angle coordinates ( x; Jx;  y; Jy), which are related to



25the normalized coordinates via the canonical transformationG1([xN ; x0N ]![ ; J ]) = �x2N2 tan xN =p2J cos x0N =�p2J sin (3:5)in each plane. Including the linear portion of the motion and denoting the unper-turbed linear base tunes by (Qx0; Qy0), we �nd the explicit form of the one-turn�rst-order nonlinear Hamiltonian:H1( x; Jx;  y; Jy) = 2�Qx0Jx + 2�Qy0Jy+~bn n=2Xk=0 n! (�1)k 2n+12(2k)!(n� 2k + 1)! (�nl;xJx)n�2k+12 (�nl;yJy)k� cosn�2k+1( x + �nl;x) cos2k( y + �nl;y) ; (3:6)where the n=2 limit in the sum is rounded up. This Hamiltonian may be writtenin another form as a useful ansatz:H1( x; Jx;  y; Jy) =2�Qx0Jx + 2�Qy0Jy+ 12�xxJ2x + �xyJxJy + 12�yyJ2y+Xk;l Vkl(Jx; Jy) cos(k x + l y + �kl) : (3:7)The �rst line of the Hamiltonian contains the linear phase advance terms asin the previous chapter. The second line contains some of the so-called \shearterms", which are not phase dependent but instead cause action-dependent tunesvia Qx(Jx; Jy) = �@H1@Jx � = Qx0 + 12� (�xxJx + �xyJy);Qy(Jx; Jy) = �@H1@Jy � = Qy0 + 12� (�xyJx + �yyJy) : (3:8)Here the brackets mean to average over all phases �x and �y | this phase aver-aging is explicitly incorrect in the case of resonant motion where only a certainsubset of particle phases are reached.



26The last line of the Hamiltonian (3.7) contains phase dependent terms, or reso-nances, that are driven by this multipole, obtained by expanding the trigonometricfunctions in Equation (3.6). Equation (3.7) is a general form of the Hamiltonianfor all orders of the nonlinear strength, with �rst order terms given exactly byEquation (3.6); these are tabulated for sextupole, octupole and decapole magnetsin Table (3.1). The Vkl coe�cients are resonance strengths which depend on theactions, and the �kl are the relative phases of the resonance driving terms.The treatment of several multipoles to �rst order is straightforward, becauseto that order there are no interactions between the nonlinearities. Thus the �rst-order nonlinear Hamiltonian for any collection of multipoles is simply the sumof their individual nonlinear Hamiltonians. For higher order nonlinear contri-butions to the �ij and Vkl coe�cients this procedure is inadequate, and othertechniques must be used to evaluate these coe�cients such as successive iterationof the discrete mapping (Peggs and Talman 1986), Deprit's algorithm (Miche-lotti 1986a,Michelotti 1986b) or application of successive Moser transformations(Merminga and Ng 1989).Examination of Table (3.1) demonstrates that sextupoles contain no shear termsto �rst order, but instead drive three sets of nonlinear resonances: Qx, 3Qx, andQx � 2Qy. Shear terms quadratic in action, which correspond to detuning, aredriven to second order in the sextupole strength; explicit formulae for this tuneshift exist (Peggs and Talman 1986, Michelotti 1986a) and have been veri�edagainst simple particle tracking. Generally, the Hamiltonian of Equation (3.6)demonstrates that for a multipole kick of order n, the highest order resonancedriven to �rst order in the multipole strength is (n + 1)Q = l. For a head-onnonlinear beam-beam kick (see Equation (7.4)), in contrast, all even resonancesare driven to �rst order in the small quantity parameterizing the kick.The 5Qx resonance investigated in E778 is explicitly directly driven to third



27HamiltonianCoe�cient Lattice ValueV1;0 p24 ~b2 J1=2x [2Jx � Jy]V3;0 p26 ~b2 J3=2xV1;�2 �p28 ~b2 J1=2x Jy�xx 34 ~b3�yy 34 ~b3�xy �32 ~b3V2;0 12 ~b3 Jx[Jx � 3Jy]V0;2 12 ~b3 Jy[Jy � 3Jx]V2;�2 �34 ~b3JxJyV4;0 18 ~b3J2xV0;4 18 ~b3J2yV5;0 p220 ~b4J5=2xV3;0 p24 ~b4J3=2x [Jx � 4Jy]V1;0 p22 ~b4J1=2x �J2x � 6JxJy + 3J2y �V1;�2 p22 ~b4J1=2x Jy [2Jy � 3Jx]V3;�2 �p22 ~b4J3=2x JyV1;�4 p24 ~b4J1=2x J2yTable 3.1: First-order Hamiltonian coe�cients in Equation (3.7) for sex-tupole, octupole and decapole magnets. The beta functions scale intothese with the actions Jx;y, but have been set equal to one here for clar-ity. For the octupole-decapole lattice octupole detuning coe�cients �ijare tripled due to the presence of three octupoles.



28order in sextupole strength (Merminga and Ng 1992,Michelotti 1986b). However,it has been hypothesized that the structure of this resonance may be adequatelyreproduced at a lower order by interference between the 3Qx and 2Qx resonances(Michelotti 1991). This issue remains a subject of debate; in either event theresonance strength driving by sextupoles is smaller than the �rst-order approachpresented here.3.2 THE ONE{DIMENSIONAL NONLINEAR N{TURN HAMILTONIANThe general multi-resonanceHamiltonian as given in Equation (3.7) is extremelydi�cult to investigate analytically. Instead we examine an explicitly one-dimen-sional case (Jy = 0), dropping the (x; y) subscripts. We also assume that thehorizontal base tuneQ0 is very close to a one-dimensional resonance: Q0 �M=N+�Q, where �Q � 1=N . Under these conditions, we shall show that the Hamiltonianis approximately that of a isolated resonance model with a family of ellipticallystable N-turn �xed points and that motion around any of these stable �xed pointscan be transformed to a form approximating that of a classical free pendulum(Chirikov 1979).One di�culty of the discrete Hamiltonian is the discontinuous nature of thephase advance | if the tune is not near an integer the net phase advance everyturn is large. However, with the assumption that the tune is near the resonanceM=N , the accumulated phase advance over N turns is very close to 2�M andthus e�ectively small. It therefore makes sense to look at a di�erence Hamilto-nian that reproduces a Poincar�e surface of section not every turn, but every Nturns. Alternatively, one could embed this system in a system of higher dimension-ality (Vivaldi 1984), but the method of integrating (summing) the Hamiltonianexplicitly at low orders is more intuitive for this application.When examining N-turn motion, the time variable needs to be changed from



29t = 0; 1; : : : to \N-turns", T � t=N = 0; 1; : : :, as stated in the previous chapter.One must also be careful to distinguish the relevant timescales for frequency-domain variables; from here on any frequency variable, say Q, is de�ned to be thefrequency of oscillations in the one-turn timescale:sin(2�Qt) = sin(2�QNT ) : (3:9)Dropping x and y subscripts and setting Jy = 0, the general one-turn one-dimensional Hamiltonian can be written from Equations (3.6) and (3.7) asH1( ; J) = 2�Q0J + 12�J2 +Xk;k0 Vkk0Jk=2 cos(k0 + �kk0) : (3:10)It is important to note that the action dependence has been removed from theresonance strength Vkk0 here and inserted as a sum of its own. Summing thisHamiltonian over N turns and approximating the action J as constant over theseN turns givesHN ( ; J) =2�N�QJ + N2 �J2+Xk;k0 Vkk0Jk=2 N�1Xi=0 cos �k0� + 2�iMN + 2�i�Q�+ �kk0� : (3:11)Only the linear contribution to the phase advance has been included in the reso-nance terms since this analysis is to �rst order in the nonlinear terms Vkk0 and �.The sum over i in (3.11) is easily found by using the identityN�1Xi=0 cos(A+ iB) = D(B;N) cos(A + N � 12 B) ;D(B;N) � sin(NB=2)sin(B=2) : (3:12)D(B;N) is extremely similar to the Dirichlet kernel found in the theory of Fourierseries; it is very strongly peaked at values of B where the di�erence betweenB=� and the nearest integer is much less than 1=N , in which case its value is



30approximately N . In this case B=� = 2k0(M=N + �Q), and so the only termsthat contribute signi�cantly are terms where k0 is a multiple of N . (This is inpractice an approximation, because very large resonance strengths, possibly fromlower order terms, can overcome this suppression.) For typical multipole magnetsencountered in accelerators (i.e. small order, n) the k0 = N term will dominate,and there will be only one resonant term that contributes. In this case we havethe isolated resonance N-turn HamiltonianHN ( ; J) =2�N�QJ + N2 �J2+NVNJN=2 cos[N + �N ]+ suppressed resonance terms ; (3:13)where a constant phase o�set N(N � 1)��Q has been absorbed into �N .3.3 PARAMETERIZATION AND CHARACTER OF RESONANT MOTIONNow that we have this Hamiltonian, we can answer the question of how the smallnonlinearity distorts the normal linear phase space motion of particles within anaccelerator. With no resonance driving at all (i.e. only linear and shear terms)particles still trace out circular trajectories in (xN ; x0N ) space, with radii p2Jand phases  . However, the particle tunes are action-dependent due to the shearterms in the Hamiltonian. This section will show that when a resonance termis introduced with shear terms present, structures called \resonance islands" areformed in phase space that can be parameterized in a way completely equivalentto free pendulum motion.Applying the discrete forms of Hamilton's equations to the N-turn Hamiltonianof Equation (3.13) gives, over N turns,� = @HN@J = 2�N�Q +N�J + N22 VNJN�2=2 cos(N ) (3:14)



31and �J = �@HN@ = N2VNJN=2 sin(N ) : (3:15)The map described by Equations (3.14) and (3.15) exhibits N-turn �xed pointswhen both �J and � are zero. The constraint �J = 0 gives one trivial solution(Jfp = 0) and 2N �xed points at the phases  fp = kres�=N , where kres is aninteger. Using these phases in Equation (3.14) then gives the equation for Jfp:2��Q + �Jfp � N2 VNJ N�22fp = 0 (3:16)where the top sign refers to even kres, and the bottom to odd kres. This equationfor the �xed-point action is in general transcendental, but can be exactly solvedfor all N below 7. Note that when no positive real solutions exist for Jfp, thereare no �xed points. In practice the detuning term is usually much larger than theresonance term, in which case an approximate solution is Jfp � �2��Q=�.We can now apply a last linear transformation to the Hamiltonian, by ex-panding the N-turn Hamiltonian (3.13) around these �xed points with the linear(canonical) translation  =  fp + � ;J = Jfp + I : (3:17)The expansion action I is assumed to be small with respect to the magnitudes ofthe �xed points action, so I � Jfp; no such constraint is placed on �. The �nalHamiltonian is then found to beHN (�; I) = N2 �I2 �NVNJN=2fp cos(N�) +O(VNI) : (3:18)If �VN is negative, there is a family of N elliptic (stable) �xed points (at phases� = 0; 2�=N; : : :, corresponding to even kres), surrounded by a separatrix inter-secting another family of N hyperbolic �xed points (at phases � = �=N; 3�=N; : : :,corresponding to odd kres); if �VN is positive the converse is true. We assume the



32latter and choose the negative sign in this Hamiltonian to examine local motionaround a stable �xed point.Motion within the separatrix is termed \resonant" or \phase-locked" | parti-cles within this region have a long-term average phase advance per turn, or tune,of exactly M=N . Particle trajectories just outside of the separatrix are distortedbut nonresonant, as seen in Figure (3.1). Consider a set of particles populatingone of these resonance islands at one particular time in the accelerator; this en-semble of particles will advance from island to island turn by turn in a completelycoherent fashion. A position measurement of the centroid of this distribution willexhibit a coherent oscillation. This oscillation can in practice be observed on aonline spectrum analyzer as a \persistent signal" at exactly the resonant tune, andwith unperturbed resonance islands it typically has an exceptionally long lifetimeof millions of turns.Ignoring terms of order VNI and higher, Equation (3.18) is a free pendulumHamiltonian and the equation of motion for � that arises is�� = �N3�VNJN=2fp sin(N�)= �N(2�QI)2 sin(N�) ; (3:19)where the time derivatives are taken with respect to the \N-turn" time variableT, and QI (the \island tune", or frequency of small librations of this pendulumsystem) is de�ned by QI � 12�NJN=4fp pj�VN j : (3:20)A typical island tune observed in the E778 experiment is approximately 0:006,with similar values given by tracking with realistic nonlinear magnet strengths.The island half-width �I can also be found from the Hamiltonian, becausethis Hamiltonian is autonomous. The separatrix is a contour along which theHamiltonian is constant, and so the Hamiltonian value at an unstable �xed point



33is equal to the Hamiltonian value at a stable �xed point phase with actions ��I:HN (� = �=N; I = 0) = HN (� = 0; I = ��I)!�I = 2JN=4fp s����VN� ���� : (3:21)Knowledge of the base tune Qx0 (and thus �Q), the island tuneQI and the detuning� allows deduction of the �xed point action Jfp, island size �I and resonancedriving strength VN .Since the motion is that of a pendulum within the resonance island, particlesat di�erent actions within the island circulate with di�erent frequencies or tunes.These tunes range from the island tune QI at actions near zero to zero frequencyon the separatrix, and can be written in terms of elliptic integrals. This nonlineardependence of frequency with action (or amplitude) of the pendulum systemmakesmeasurement of QI more di�cult, for only particles with actions near the �xedpoint action actually rotate in the island with this tune.3.4 FIRST ORDER NONLINEAR TRACKING AND SIMULATIONFor the issues investigated in this thesis, it was deemed necessary to design adedicated simulation program that tracked a minimal lattice which drives relevantterms in the nonlinear Hamiltonian to �rst order. The Octupole-Decapole modellattice is designed with this goal in mind; it also uses sets of specially placedquadrupoles to independently control tune modulation and beta modulation atthe resonance-driving nonlinearity. For simplicity, all beta functions are set at onemeter in the following discussion and within the tracking codes themselves.The lowest order multipoles that drive action-dependent nonlinear detuning ofthe form �J2 are octupoles, as seen in Table (3.1). To �rst order all resonanceterms contributed by the octupoles should vanish in the simulation. This enablescomplete separation between detuning, the function of the octupoles, and reso-nance driving from the decapole. It is possible to eliminate all but one of the �rst
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Figure 3.3: The octupole-decapole lattice.order octupole resonances, the diagonal coupling resonance 2Qx�2Qy, by drivingthree octupoles with the same strength, spaced apart by a betatron phase advanceof 60� = 2�=3 between each octupole. This also triples the phase-independent de-tuning coe�cients �ij over their single octupole values. The decapole is used todrive the 5Qx resonance, motivated by the study of this resonance in E778.To investigate the e�ects of tune modulation and beta modulation, the linearphase advances in the lattice were set to constant values and only special quad-rupoles explicitly introduced into the lattice were modulated. Three quadrupolesare su�cient to independently control the tune modulation of the lattice and betamodulation at the resonance-driving decapole. The tune shift from a single smallquadrupole error is given by Equation (2.22), recalling �x = �y = 1m for thislattice, �Q(quad) = ~b14� : (3:22)



35This is independent of the phase of the quadrupole within the machine, so a pairof modulated quadrupoles driven with the same sign will produce tune modulationwith strength q = 2�Q = ~b1=2�. The beta modulation created by a quadrupoleerror is given by Equation (4.4),��(s) = ~b12 [sin(2j�(s) � �quadj)� cos(2j�(s) � �quadj) tan(2�Q0)] : (3:23)Two quadrupoles driven with equal strength, opposite sign and 90� apart in phaseadvance will destructively interfere outside of this phase advance. They construc-tively interfere within the 90� phase advance, and at a point exactly halfway inbetween them they will modulate the beta function with strength b = �� = ~b1,with no tune modulation since the quadrupoles are driven with equal and oppositestrengths.The elements of this lattice are shown in Figure (3.3); the phase advancesoutside the cluster of quadrupoles and nonlinear elements are set by the twoconstraints that the linear tunes are some set values, say (Qx0; Qy0), and thedecapole is positioned exactly halfway through the lattice from the reference point,so �dec = �Q0 in each plane.A one-dimensional tracking program, OdTrack, has been written which trackssingle particles through horizontal phase space in this lattice and includes thee�ects of either or both tune modulation and beta modulation. The inputs to thisprogram include the horizontal base tune, the octupole and decapole strengths ~b3and ~b4, the amplitude and period (in turns) of the modulation and the number ofturns to track. Particles can be launched at a variety of amplitudes but only at asingle phase during every execution of the simulation. Output includes the phasespace coordinates of every particle for each synchrotron period and the measuredtune of each particle over the entire tracking run.Timing tests on a Sparcstation IPX show an iteration CPU time of 33 �s per



36turn, making million-turn tracking with this lattice easily accessible. Raising thetimescales by several orders of magnitude to examine thousands of millions ofturns (or millions of synchrotron periods) of evolution still only requires tens ofhours of processing time, and is quite feasible.The prediction for the island tune of Equation (3.20) is proportional to thesquare root of both the detuning � and the resonance driving strength V5. How-ever, with the approximation that V5J �12fp � � in Equation (3.16) for the �xedpoint action Jfp, it is apparent that the �xed point action also varies inverselywith the detuning. Therefore, since the resonance strength VN is driven to �rstorder in the decapole strength and the detuning is driven to �rst order in octupolestrength (see Table [3.1]), the island tune is expected to vary as:QI / ~b�343 ~b124 : (3:24)Figure (3.4) shows a comparison of the theoretical prediction for QI to trackingin this lattice while varying the octupole strength, showing the scaling of (3.24)for small ~b3. As this strength becomes nonperturbatively large (on the orderof 3~b3 � 1, since there are three octupoles in this lattice), the naive �rst orderpredictions fail. This is due to a higher-order contribution to the resonance drivingby the octupoles which cannot be ignored in this limit. However, for octupolestrengths smaller than :1 m�3=2, the results of �rst order perturbation theoryappears adequate.Figure (3.5) shows a similar comparison while varying the decapole strength,keeping the octupole strengths constant. Here the approximation begins to fail atlower orders as the 3Qx resonance, also driven to �rst order in ~b4, begins to distortthe phase space where the resonance islands are located. For decapole strengthsless than 10�3 m�2, at the octupole strength listed, the prediction and scaling of(3.24) agree with tracking.
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383.5 MEASUREMENTS IN REAL ACCELERATORSThe detuning coe�cient � can be experimentally measured in several ways. Onemethod is to kick the beam transversely and observe the resulting tune shift at thisbetatron amplitude. This is typically only possible if the beam is small enoughsuch that there is no appreciable tune spread over the beam distribution, due tothe presence of tune spread decoherence as discussed in the next paragraph. Thisis also the method used by tracking programs to measure the tune dependenceon amplitude, because the phase advance for a single particle can be measuredto the computational precision and there is no tune spread or decoherence insingle-particle motion.With a moderately sized beam, the detuning coe�cient can be measured byobserving the decoherence time of a bunch kicked into a non-resonant section ofphase space. Particles that comprise a kicked bunch will have di�erent tunes(because of their di�erent amplitudes after the kick), and so the distributionwill \decohere", with the phases of particles with smaller tunes lagging furtherand further behind those of particles with larger tunes. The timescale for thisphenomena to decohere the beam is� (decohere) = 1�dQdJ �J(kick) � � ; (3:25)where J(kick) is the action of the kick and � is the size of the beam measured inunits of the action. For conditions experienced in experiment E778, the typical de-coherence time is tens to hundreds of machine turns. This phenomenon has beenpreviously studied, both within the context of E778 (Chao et. al. 1987b, Chao et.al. 1988, Merminga 1989) and in other environments (Lee et. al. 1991, Byrd 1992).It gives a quantitative measurement of the detuning strength even when the co-herent oscillation decays rapidly and direct measurement of the tune at the new



39betatron amplitude is impossible. An illustration of this decoherence is shownin Figure (3.6), and an actual experimental turn-by-turn position measurementshowing this decoherence is shown in Figure (3.9).With this independent measure of �, one now needs to know the island tuneor island width in order to deduce the resonance strength. The island width hasbeen measured in past E778 experimental runs by observing the fraction of kickedbeam trapped within a resonance island (Chao et. al. 1988, Merminga 1989). Atypical value of the physical island width, p�I�x, reported by Merminga is half amillimeter. This method usually can only give general estimates of �I, and relieson �ne calibration of the kicker.Instead, recent experiments have concentrated on measuringQI, the island tune,in machines where strong resonances have been driven by explicitly introducednonlinearities. Sextupoles have predominantly been used, since they are the low-est order nonlinear multipoles and are commonly found in many accelerators tocorrect chromatic focusing errors. The procedure of �nding and populating suchresonance islands in the phase space of a real machine is greatly simpli�ed bythe appearance of \persistent signals" when a signi�cant fraction of the beam iscaptured within a resonance island. When this occurs, the trapped beam exhibitsa coherent oscillation with an exceptionally long lifetime | millions of turns |and the frequency spectrum of the beam on an online spectrum analyzer shows along-lived peak exactly at the resonant frequency.One possible method to determine the island tune is to examine the coherentmotion of a bunch kicked into a resonance island. If the bunch is small enough (ie.has an RMS size much smaller than the size of the island), it behaves essentiallyas a single particle for times much smaller than it's decoherence time withinthe island. The resulting coherent motion within the resonance allows directmeasurement of QI; such an approach was adopted by the CE22 collaboration at



40IUCF (Lee et. al. 1991). Figure (3.7) shows a representation of such a kick appliedto the resonant system seen in Figure (3.6).In the Fermilab Tevatron, beam sizes are typically large compared to the sizeof induced resonance islands; creation of larger resonance islands is impracticaldue to physical aperture considerations. This means that when the beam is kickedonto the resonance, the entire resonance island is populated. There is still a strongpersistent signal corresponding to the coherent motion from island to island, butthere is no local coherent motion of the particles trapped within the resonanceisland that allows direct observation of QI. Figure (3.8) shows a symbolic rep-resentation of such a kick, including the decoherence of the portion of the beamnot trapped within the resonance island. A sample turn-by-turn position mea-surement from E778 showing this decoherence and a persistent signal is seen inFigure (3.10), showing beam capture on a 5Qx resonance island chain.There are various frequency-domain methods of examining the distribution ofparticles �lling a single resonance island (Chen 1990). For example, if the reso-nance island is completely but not evenly populated, the discrete Fourier trans-form of a BPM measurement taken every N turns should show a low-frequencyelement similar to that of an ensemble of driven pendula, dropping o� quickly intobackground noise at frequencies near the island tune.Since the distribution of particles within the resonance island was indeed ex-pected to be relatively even due to the nature of the beam size used in E778,another method is investigated in this thesis. Resonantly captured beam was ex-cited with a set of very weakly modulated quadrupoles, modulating the tune ande�ectively turning the ensemble of free pendula into driven pendula. The frequen-cy response of the beam was then correlated to the frequency of the modulationfor a reasonable measurement of the island tune.



41
-1.0 -0.5 0.0 0.5 1.0

XN  (m1/2)

-1.0

-0.5

0.0

0.5

1.0

X’N  (m1/2)

-1.0 -0.5 0.0 0.5 1.0

XN  (m1/2)

-1.0

-0.5

0.0

0.5

1.0

X’N  (m1/2)

Figure 3.6: Beam decoherence from a kick into a sheared non-resonantsection of phase space. The intermediate distribution has a centroid po-sition that decays with time and approaches a �nal annular distribution(which has a larger emittance than the initial distribution and a centroidposition of zero) over approximately hundreds of turns.
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Figure 3.7: Phase space plot of a small beam kicked into an N = 5nonlinear resonance island. Measurement of the centroid of the kickeddistribution every 5 machine turns shows coherent motion around thecenter of the island, making direct measurement of the island tune QIpossible.
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Figure 3.8: Phase space plot of a large beam kicked into anN = 5 nonlin-ear resonance island. The untrapped portion of the beam decoheres anddoes not contribute to the coherent centroid motion. The trapped por-tion coherently moves between resonance islands, but shows no evidenceof the island tune QI.
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Figure 3.9: Sample E778 turn-by-turn data at kick time, showing thekick and gaussian decoherence. Kicker voltage is 11 kV, in the E77891 0 lattice. The graphics are produced by the kaspar graphics program.The decoherence pictured has a timescale of approximately 100 turns.
Figure 3.10: Sample turn-by-turn data at kick time for two BPMs sepa-rated by a betatron phase of approximately 70 degrees, showing the kickand production of a Qx = 20:40 persistent signal. Kicker voltage andlattice are as in above �gure. Only 2500 turns are pictured here, but thiscoherent oscillation survives for millions of turns.


