CHAPTER 3
NONLINEAR RESONANCE ISLANDS AND
ONE-DIMENSIONAL PERSISTENT SIGNALS

In this chapter a discrete Hamiltonian approach to two-dimensional transverse
nonlinear resonances is presented that gives perturbative results exact to first or-
der in nonlinear magnet strength. One-turn and N-turn Hamiltonians are derived
from a projection map (Peggs 1982) in § 3.1-2 respectively; these Hamiltonians can
be considered to respectively generate the one-turn and N-turn Poincaré surface
of section maps. Certain phase space structures, called “resonance islands”, can
appear with one-dimensional resonant motion as pictured in Figure (3.1). These
structures are shown to be parameterized by several experimentally accessible
quantities including the island tune, @)1, in § 3.3; a computational single particle
tracking simulation is described in § 3.4 and compared to theoretical prediction for
the 5@), resonance. Various methods used to experimentally investigate nonlinear
resonance islands are discussed in § 3.5, in particular those used in experiment
CE22 at the IUCF Cooling Ring and for this thesis in experiment E778 at Fermi-
lab.

3.1 THE FIRST ORDER NONLINEAR ONE-TURN HAMILTONIAN

In the previous chapter the action-angle parameterization was presented for the
uncoupled linear transverse one-turn particle motion in a synchrotron. The next
issue is how to include the effects of nonlinear magnets to form a discrete Hamilto-
nian that more adequately describes motion in a real accelerator. A perturbative
approach that is correct to first order in nonlinear magnet strengths is used here;
however, there exist a multitude of other methods, both perturbative (Miche-

lotti 1986a) and non-perturbative (Gabella 1991), that give similarly-structured
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Figure 3.1: Isolated 5@}, resonance islands in various phase space coor-
dinate systems. Data is taken from simulation and tracking using the
octupole/decapole lattice described in Section 3.4, which drives the res-
onance seen here to first order in decapole strength.
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Hamiltonians.

Consider a synchrotron with a single thin nonlinearity of normalized strength
b,, where n represents the order of the nonlinearity. Transverse single-particle
motion around the ring consists of three parts: a linear phase advance to the
nonlinearity, the nonlinear kick and another linear phase advance back to the
starting point. Since the linear portion of this motion is already well-described by
the Hamiltonian of the previous chapter, it is removed here by a reverse rotation
through the ring while ignoring the nonlinearity. This has the effect of projecting
the kick at the phase advance of the nonlinearity to a nonlinear one-turn map of
the initial particle coordinates.

Denote the horizontal and vertical phase advances at the location of the non-
linearity by (¢ni,z, @ni,y) (as measured from a reference point) and the linear beta
functions by (Bni,«, Fni,y). The nonlinear kicks at this location in normalized co-

ordinates are then given by substitution the of normalized coordinate definitions

into the nonlinear kick expansion, Equation (2.6):

n/2

z n 2Lk
AxlN = _bn Z <2k>(_1)kﬂnl,w N 2k 651,3; yjz\;C )
k=0
w21 (3.1)

Ay?v =5,

i

n katsr—k n—2k—1 sk+1_ 2k+1

This nonlinearity is a perturbation at a particular phase advance within the

machine. To quantify this consider the “projection mapping”:

Az N TN
A(E’]\f —1 K xl
=R nl,zy Pn “1R nl,zy Pn N 3.2
AV =R Gt t) () R | 1Y | 52)
Ayl YN
where R is the 4 x 4 block diagonal linear rotation matrix
cos ¢,  sing, 0 0
_ | —sing, coso, 0 0
R(¢z,¢y) = 0 0 cos ¢,  sin g, (3.3)

0 0 —sin @, COS Py
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Figure 3.2: A simple lattice for the projection of a nonlinear kick onto a
mapping of initial particle coordinates.

and the K, symbolize the nonlinear kicks (3.1) in each plane. This accurately
accounts for the nonlinear motion — the linear portion of the motion has been

removed by the inverse rotation R™1.

If 2y is the canonical momentum for , the mapping of Equation (3.2) is actually
integrable. A discrete one-turn nonlinear Hamiltonian Hy ni(zn, 2y, yn, ) can
be written such that discrete forms of Hamilton’s equations are obeyed as in the

previous chapter:

AJ}N 8H1,n1/8:1;’N

AJ}IN _ — 8H1,n1/8:1:N (3 4)
Ayn OH1 1/ 0Y'y '
Ay?\f — 8H1,nl/8yN

The Hamiltonian can be written in these coordinates but it is much more mean-

ingful to write it in action-angle coordinates (¢;, J4, ¥y, Jy ), which are related to
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the normalized coordinates via the canonical transformation

2

x
Gr([en, @y] =, J]) = —7F tany
xy =V2J cosp (3.5)
2y = —V2Jsine
in each plane. Including the linear portion of the motion and denoting the unper-

turbed linear base tunes by (Q0,@yo), we find the explicit form of the one-turn

first-order nonlinear Hamiltonian:

H1(¢I, Jf,L/)y, Jy) = 27TQ$0JI —|— 27TQy0Jy

bt o/ n'(—l)k 2nT+1 n—2k+1 &
o kz:(%)'(n —2k+1)! (Bntade) 2 (Bt yJy) (3.6)
=0

X cos"_2k+1(@/)x + Oniz) COSzk(l/Jy + Onty)

where the n/2 limit in the sum is rounded up. This Hamiltonian may be written

in another form as a useful ansatz:
H1(¢I, JI, ¢y7 Jy) = 27TQ$0JI —|— 27TQy0Jy

1 1

+ > Vil Je, Jy) cos(kibe + by + dia) -
ol

(3.7)

The first line of the Hamiltonian contains the linear phase advance terms as
in the previous chapter. The second line contains some of the so-called “shear

terms”, which are not phase dependent but instead cause action-dependent tunes

via
OH 1
QI(Jxa Jy) — < aJ1> = QxO + %(Ofxxjx + axyjy)a
8HI 1 (3:8)
1
Qy(Je. Jy) = <8—Jy> = Qyo + %(O‘xy']x + ayyJy) -
Here the brackets mean to average over all phases ¢, and ¢, — this phase aver-

aging is explicitly incorrect in the case of resonant motion where only a certain

subset of particle phases are reached.
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The last line of the Hamiltonian (3.7) contains phase dependent terms, or reso-
nances, that are driven by this multipole, obtained by expanding the trigonometric
functions in Equation (3.6). Equation (3.7) is a general form of the Hamiltonian
for all orders of the nonlinear strength, with first order terms given exactly by
Equation (3.6); these are tabulated for sextupole, octupole and decapole magnets
in Table (3.1). The Vi coeflicients are resonance strengths which depend on the
actions, and the ¢ are the relative phases of the resonance driving terms.

The treatment of several multipoles to first order is straightforward, because
to that order there are no interactions between the nonlinearities. Thus the first-
order nonlinear Hamiltonian for any collection of multipoles is simply the sum
of their individual nonlinear Hamiltonians. For higher order nonlinear contri-
butions to the «;; and Vi coefficients this procedure is inadequate, and other
techniques must be used to evaluate these coefficients such as successive iteration
of the discrete mapping (Peggs and Talman 1986), Deprit’s algorithm (Miche-
lotti 1986a,Michelotti 1986b) or application of successive Moser transformations
(Merminga and Ng 1989).

Examination of Table (3.1) demonstrates that sextupoles contain no shear terms
to first order, but instead drive three sets of nonlinear resonances: @),, 3Q,, and
Q. £2Q,. Shear terms quadratic in action, which correspond to detuning, are
driven to second order in the sextupole strength; explicit formulae for this tune
shift exist (Peggs and Talman 1986, Michelotti 1986a) and have been verified
against simple particle tracking. Generally, the Hamiltonian of Equation (3.6)
demonstrates that for a multipole kick of order n, the highest order resonance
driven to first order in the multipole strength is (n + 1)@ = [. For a head-on
nonlinear beam-beam kick (see Equation (7.4)), in contrast, all even resonances
are driven to first order in the small quantity parameterizing the kick.

The 5@), resonance investigated in E778 is explicitly directly driven to third



Hamiltonian
Coefficient Lattice Value
Vi V25, 1220, — 7
Vi 2j, g3
Viaa — 2, g,
Qgy % 23
ayy 3 by
Qgy —% 23
Vao Ly Jo[Je — 37,
Voo Ly T[Ty — 37
Va 42 -3 b Jody
Vio L,
Vou Lbs.72
Vs.o VAW
Vao 25, )3 T, — 4T,
Vio 2y 12 [J2 61,7, + 377
Vito 24, 722 T, (27, — 37,
Vs a2 2, g3,
Vi a4 V25,74 g

Table 3.1: First-order Hamiltonian coefficients in Equation (3.7) for sex-
tupole, octupole and decapole magnets. The beta functions scale into
these with the actions J, ,, but have been set equal to one here for clar-
ity. For the octupole-decapole lattice octupole detuning coefficients ay;

are tripled due to the presence of three octupoles.

27
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order in sextupole strength (Merminga and Ng 1992, Michelotti 1986b). However,
it has been hypothesized that the structure of this resonance may be adequately
reproduced at a lower order by interference between the 3Q), and 2¢), resonances
(Michelotti 1991). This issue remains a subject of debate; in either event the
resonance strength driving by sextupoles is smaller than the first-order approach

presented here.

3.2 THE ONE-DIMENSIONAL NONLINEAR N-TURN HAMILTONIAN

The general multi-resonance Hamiltonian as given in Equation (3.7) is extremely
difficult to investigate analytically. Instead we examine an explicitly one-dimen-
sional case (J, = 0), dropping the (z,y) subscripts. We also assume that the
horizontal base tune @ is very close to a one-dimensional resonance: Qo = M /N +
6¢, where 6g < 1/N. Under these conditions, we shall show that the Hamiltonian
is approximately that of a isolated resonance model with a family of elliptically
stable N-turn fixed points and that motion around any of these stable fixed points
can be transformed to a form approximating that of a classical free pendulum
(Chirikov 1979).

One difficulty of the discrete Hamiltonian is the discontinuous nature of the
phase advance — if the tune is not near an integer the net phase advance every
turn is large. However, with the assumption that the tune is near the resonance
M/N, the accumulated phase advance over N turns is very close to 27 M and
thus effectively small. It therefore makes sense to look at a difference Hamilto-
nian that reproduces a Poincaré surface of section not every turn, but every N
turns. Alternatively, one could embed this system in a system of higher dimension-
ality (Vivaldi 1984), but the method of integrating (summing) the Hamiltonian
explicitly at low orders is more intuitive for this application.

When examining N-turn motion, the time variable needs to be changed from
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t=0,1,... to “N-turns”, T = t/N = 0,1, ..., as stated in the previous chapter.
One must also be careful to distinguish the relevant timescales for frequency-
domain variables; from here on any frequency variable, say @, is defined to be the

frequency of oscillations in the one-turn timescale:
sin(27rQt) = sin(2rQNT) . (3.9)

Dropping = and y subscripts and setting J, = 0, the general one-turn one-
dimensional Hamiltonian can be written from Equations (3.6) and (3.7) as
Hi(,J) =21Q0J + %a,ﬂ + ) Vi T2 cos(k' + b (3.10)
kK
It is important to note that the action dependence has been removed from the
resonance strength Vi here and inserted as a sum of its own. Summing this
Hamiltonian over N turns and approximating the action J as constant over these

N turns gives

N
Hy (3, J) =27NbégJ + Eoz,fz

V; ,J"?/?N_1 k! 2mM s
+Z k! Zcos Y+ N T 2miog + drrr | -
1=0

kK

(3.11)

Only the linear contribution to the phase advance has been included in the reso-
nance terms since this analysis is to first order in the nonlinear terms Vi and «.

The sum over ¢ in (3.11) is easily found by using the identity

z_:cos(A—l—iB):D(B,N)COS(A—I-% )
i=0 3.12
D(B.N) = sin(NB/2) 242
"7 sin(B/2)

D(B, N) is extremely similar to the Dirichlet kernel found in the theory of Fourier
series; it is very strongly peaked at values of B where the difference between

B/7 and the nearest integer is much less than 1/N, in which case its value is
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approximately N. In this case B/m = 2k'(M/N + 6¢g), and so the only terms
that contribute significantly are terms where k' is a multiple of N. (This is in
practice an approximation, because very large resonance strengths, possibly from
lower order terms, can overcome this suppression.) For typical multipole magnets
encountered in accelerators (i.e. small order, n) the k' = N term will dominate,
and there will be only one resonant term that contributes. In this case we have

the isolated resonance N-turn Hamiltonian

N
Hy (3, J) =27NbgJ + Eaﬁ
+ NVNIN2 cos[ Nt + ¢ (3.13)
+ suppressed resonance terms ,

where a constant phase offset N(N — 1)mdg has been absorbed into ¢ .

3.3 PARAMETERIZATION AND CHARACTER OF RESONANT MOTION

Now that we have this Hamiltonian, we can answer the question of how the small
nonlinearity distorts the normal linear phase space motion of particles within an
accelerator. With no resonance driving at all (i.e. only linear and shear terms)
particles still trace out circular trajectories in (zy,2'y) space, with radii V2T
and phases t». However, the particle tunes are action-dependent due to the shear
terms in the Hamiltonian. This section will show that when a resonance term
is introduced with shear terms present, structures called “resonance islands” are
formed in phase space that can be parameterized in a way completely equivalent
to free pendulum motion.

Applying the discrete forms of Hamilton’s equations to the N-turn Hamiltonian

of Equation (3.13) gives, over N turns,

A= BN o Nso 4 Nad + N g2 (Ny) (3.14)
=7 Q 3 N cos .



31

and
OH N
o
The map described by Equations (3.14) and (3.15) exhibits N-turn fixed points

AJ = = N2V TN 2 sin(Ne) . (3.15)

when both AJ and A are zero. The constraint AJ = 0 gives one trivial solution
(Jfp = 0) and 2N fixed points at the phases ¢ ¢, = kyesm/N, where ky¢, is an

integer. Using these phases in Equation (3.14) then gives the equation for J¢,:
N
27T(5Q+Ozjfp:|: ?VNpr =0 (316)

where the top sign refers to even k,.,, and the bottom to odd k,.s. This equation
for the fixed-point action is in general transcendental, but can be exactly solved
for all N below 7. Note that when no positive real solutions exist for Jg,, there
are no fixed points. In practice the detuning term is usually much larger than the
resonance term, in which case an approximate solution is Jf, &~ —2md¢g/a.

We can now apply a last linear transformation to the Hamiltonian, by ex-
panding the N-turn Hamiltonian (3.13) around these fixed points with the linear

(canonical) translation

V=1 +0,
J:pr—l—f.

The expansion action [ is assumed to be small with respect to the magnitudes of

(3.17)

the fixed points action, so I < Jy,; no such constraint is placed on 6. The final

Hamiltonian is then found to be
N 2 N/2
Hn(0,1) = EOéI + NVNpr cos(NO) + O(VNI) . (3.18)

If oV is negative, there is a family of N elliptic (stable) fixed points (at phases
6 = 0,27/N,..., corresponding to even ky.s), surrounded by a separatrix inter-
secting another family of N hyperbolic fixed points (at phases § = /N, 37 /N, ...,

corresponding to odd ky.s); if aVy is positive the converse is true. We assume the
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latter and choose the negative sign in this Hamiltonian to examine local motion
around a stable fixed point.

Motion within the separatrix is termed “resonant” or “phase-locked” — parti-
cles within this region have a long-term average phase advance per turn, or tune,
of exactly M/N. Particle trajectories just outside of the separatrix are distorted
but nonresonant, as seen in Figure (3.1). Consider a set of particles populating
one of these resonance islands at one particular time in the accelerator; this en-
semble of particles will advance from island to island turn by turn in a completely
coherent fashion. A position measurement of the centroid of this distribution will
exhibit a coherent oscillation. This oscillation can in practice be observed on a
online spectrum analyzer as a “persistent signal” at exactly the resonant tune, and
with unperturbed resonance islands it typically has an exceptionally long lifetime
of millions of turns.

Ignoring terms of order VyI and higher, Equation (3.18) is a free pendulum

Hamiltonian and the equation of motion for € that arises is

§ = —N3aVyJY/?sin(N6)
& (3.19)
= —N(27Q1)* sin(N) |

where the time derivatives are taken with respect to the “N-turn” time variable

T, and Q1 (the “island tune”, or frequency of small librations of this pendulum

system) is defined by
1
Q= ﬂNJﬁ/4\/|aVN| . (3.20)

A typical island tune observed in the E778 experiment is approximately 0.006,

with similar values given by tracking with realistic nonlinear magnet strengths.
The island half-width 61 can also be found from the Hamiltonian, because

this Hamiltonian is autonomous. The separatrix is a contour along which the

Hamiltonian is constant, and so the Hamiltonian value at an unstable fixed point
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is equal to the Hamiltonian value at a stable fixed point phase with actions +61:
HN(G = F/N,IZO) = HN(G =0,1= :E(SI) —

VN

[a%

Knowledge of the base tune (), (and thus ¢ ), the island tune ()1 and the detuning

N1 (3.21)

oI =27,

« allows deduction of the fixed point action Jy,, island size 6I and resonance
driving strength V.

Since the motion is that of a pendulum within the resonance island, particles
at different actions within the island circulate with different frequencies or tunes.
These tunes range from the island tune @)1 at actions near zero to zero frequency
on the separatrix, and can be written in terms of elliptic integrals. This nonlinear
dependence of frequency with action (or amplitude) of the pendulum system makes
measurement of ()1 more difficult, for only particles with actions near the fixed

point action actually rotate in the island with this tune.

3.4 FIRST ORDER NONLINEAR TRACKING AND SIMULATION

For the issues investigated in this thesis, it was deemed necessary to design a
dedicated simulation program that tracked a minimal lattice which drives relevant
terms in the nonlinear Hamiltonian to first order. The Octupole-Decapole model
lattice is designed with this goal in mind; it also uses sets of specially placed
quadrupoles to independently control tune modulation and beta modulation at
the resonance-driving nonlinearity. For simplicity, all beta functions are set at one
meter in the following discussion and within the tracking codes themselves.

The lowest order multipoles that drive action-dependent nonlinear detuning of
the form «.J? are octupoles, as seen in Table (3.1). To first order all resonance
terms contributed by the octupoles should vanish in the simulation. This enables
complete separation between detuning, the function of the octupoles, and reso-

nance driving from the decapole. It is possible to eliminate all but one of the first
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Figure 3.3: The octupole-decapole lattice.

order octupole resonances, the diagonal coupling resonance 2¢), —2Q),, by driving
three octupoles with the same strength, spaced apart by a betatron phase advance
of 60° = 27/3 between each octupole. This also triples the phase-independent de-
tuning coefficients a;; over their single octupole values. The decapole is used to

drive the 5@), resonance, motivated by the study of this resonance in E778.

To investigate the effects of tune modulation and beta modulation, the linear
phase advances in the lattice were set to constant values and only special quad-
rupoles explicitly introduced into the lattice were modulated. Three quadrupoles
are sufficient to independently control the tune modulation of the lattice and beta
modulation at the resonance-driving decapole. The tune shift from a single small
quadrupole error is given by Equation (2.22), recalling 5, = 8, = 1m for this

lattice,

b
AQ(quad) = ﬁ : (3.22)
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This is independent of the phase of the quadrupole within the machine, so a pair
of modulated quadrupoles driven with the same sign will produce tune modulation
with strength ¢ = 2AQ = g1/27r. The beta modulation created by a quadrupole

error is given by Equation (4.4),

AB(s) = 2 [sin(2]6(3) — dyuaal) — con(216(5) — Gyuaal) ton(27Qu)] . (3.23)

Two quadrupoles driven with equal strength, opposite sign and 90° apart in phase
advance will destructively interfere outside of this phase advance. They construc-
tively interfere within the 90° phase advance, and at a point exactly halfway in
between them they will modulate the beta function with strength b = Afg = by,
with no tune modulation since the quadrupoles are driven with equal and opposite
strengths.

The elements of this lattice are shown in Figure (3.3); the phase advances
outside the cluster of quadrupoles and nonlinear elements are set by the two
constraints that the linear tunes are some set values, say (Qg0,@yo0), and the
decapole is positioned exactly halfway through the lattice from the reference point,
50 ¢gec = ™Qg in each plane.

A one-dimensional tracking program, OdTrack, has been written which tracks
single particles through horizontal phase space in this lattice and includes the
effects of either or both tune modulation and beta modulation. The inputs to this
program include the horizontal base tune, the octupole and decapole strengths by
and 54, the amplitude and period (in turns) of the modulation and the number of
turns to track. Particles can be launched at a variety of amplitudes but only at a
single phase during every execution of the simulation. Output includes the phase
space coordinates of every particle for each synchrotron period and the measured
tune of each particle over the entire tracking run.

Timing tests on a Sparcstation IPX show an iteration CPU time of 33 ps per
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turn, making million-turn tracking with this lattice easily accessible. Raising the
timescales by several orders of magnitude to examine thousands of millions of
turns (or millions of synchrotron periods) of evolution still only requires tens of
hours of processing time, and is quite feasible.

The prediction for the island tune of Equation (3.20) is proportional to the

square root of both the detuning « and the resonance driving strength V5. How-
-1

ever, with the approximation that VsJ;, < a in Equation (3.16) for the fixed
point action Jy,, it is apparent that the fixed point action also varies inversely
with the detuning. Therefore, since the resonance strength Vy is driven to first
order in the decapole strength and the detuning is driven to first order in octupole

strength (see Table [3.1]), the island tune is expected to vary as:

=3
I

Qloczi,) b

ol

(3.24)

Figure (3.4) shows a comparison of the theoretical prediction for Q1 to tracking
in this lattice while varying the octupole strength, showing the scaling of (3.24)
for small 5. As this strength becomes nonperturbatively large (on the order
of 3b; &~ 1, since there are three octupoles in this lattice), the naive first order
predictions fail. This is due to a higher-order contribution to the resonance driving
by the octupoles which cannot be ignored in this limit. However, for octupole
strengths smaller than .1 m™3/2, the results of first order perturbation theory
appears adequate.

Figure (3.5) shows a similar comparison while varying the decapole strength,
keeping the octupole strengths constant. Here the approximation begins to fail at
lower orders as the 3Q, resonance, also driven to first order in by, begins to distort
the phase space where the resonance islands are located. For decapole strengths
less than 1072 m ™2, at the octupole strength listed, the prediction and scaling of
(3.24) agree with tracking.
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3.5 MEASUREMENTS IN REAL ACCELERATORS

The detuning coefficient o can be experimentally measured in several ways. One
method is to kick the beam transversely and observe the resulting tune shift at this
betatron amplitude. This is typically only possible if the beam is small enough
such that there is no appreciable tune spread over the beam distribution, due to
the presence of tune spread decoherence as discussed in the next paragraph. This
is also the method used by tracking programs to measure the tune dependence
on amplitude, because the phase advance for a single particle can be measured
to the computational precision and there is no tune spread or decoherence in
single-particle motion.

With a moderately sized beam, the detuning coefficient can be measured by
observing the decoherence time of a bunch kicked into a non-resonant section of
phase space. Particles that comprise a kicked bunch will have different tunes
(because of their different amplitudes after the kick), and so the distribution
will “decohere”, with the phases of particles with smaller tunes lagging further
and further behind those of particles with larger tunes. The timescale for this

phenomena to decohere the beam is

1
@) .
< 47 ] 7(kick) 4

where J(kick) is the action of the kick and o is the size of the beam measured in

7(decohere) =

: (3.25)

units of the action. For conditions experienced in experiment E778, the typical de-
coherence time is tens to hundreds of machine turns. This phenomenon has been
previously studied, both within the context of E778 (Chao et. al. 1987b, Chao et.
al. 1988, Merminga 1989) and in other environments (Lee et. al. 1991, Byrd 1992).
It gives a quantitative measurement of the detuning strength even when the co-

herent oscillation decays rapidly and direct measurement of the tune at the new
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betatron amplitude is impossible. An illustration of this decoherence is shown
in Figure (3.6), and an actual experimental turn-by-turn position measurement
showing this decoherence is shown in Figure (3.9).

With this independent measure of «, one now needs to know the island tune
or island width in order to deduce the resonance strength. The island width has
been measured in past E778 experimental runs by observing the fraction of kicked
beam trapped within a resonance island (Chao et. al. 1988, Merminga 1989). A
typical value of the physical island width, \/6I3,, reported by Merminga is half a
millimeter. This method usually can only give general estimates of 61, and relies
on fine calibration of the kicker.

Instead, recent experiments have concentrated on measuring @1, the island tune,
in machines where strong resonances have been driven by explicitly introduced
nonlinearities. Sextupoles have predominantly been used, since they are the low-
est order nonlinear multipoles and are commonly found in many accelerators to
correct chromatic focusing errors. The procedure of finding and populating such
resonance islands in the phase space of a real machine is greatly simplified by
the appearance of “persistent signals” when a significant fraction of the beam is
captured within a resonance island. When this occurs, the trapped beam exhibits
a coherent oscillation with an exceptionally long lifetime — millions of turns —
and the frequency spectrum of the beam on an online spectrum analyzer shows a
long-lived peak exactly at the resonant frequency.

One possible method to determine the island tune is to examine the coherent
motion of a bunch kicked into a resonance island. If the bunch is small enough (ie.
has an RMS size much smaller than the size of the island), it behaves essentially
as a single particle for times much smaller than it’s decoherence time within
the island. The resulting coherent motion within the resonance allows direct

measurement of (J1; such an approach was adopted by the CE22 collaboration at
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IUCF (Lee et. al. 1991). Figure (3.7) shows a representation of such a kick applied
to the resonant system seen in Figure (3.6).

In the Fermilab Tevatron, beam sizes are typically large compared to the size
of induced resonance islands; creation of larger resonance islands is impractical
due to physical aperture considerations. This means that when the beam is kicked
onto the resonance, the entire resonance island is populated. There is still a strong
persistent signal corresponding to the coherent motion from island to island, but
there is no local coherent motion of the particles trapped within the resonance
island that allows direct observation of ;. Figure (3.8) shows a symbolic rep-
resentation of such a kick, including the decoherence of the portion of the beam
not trapped within the resonance island. A sample turn-by-turn position mea-
surement from E778 showing this decoherence and a persistent signal is seen in
Figure (3.10), showing beam capture on a 5@, resonance island chain.

There are various frequency-domain methods of examining the distribution of
particles filling a single resonance island (Chen 1990). For example, if the reso-
nance island is completely but not evenly populated, the discrete Fourier trans-
form of a BPM measurement taken every N turns should show a low-frequency
element similar to that of an ensemble of driven pendula, dropping off quickly into
background noise at frequencies near the island tune.

Since the distribution of particles within the resonance island was indeed ex-
pected to be relatively even due to the nature of the beam size used in E778,
another method is investigated in this thesis. Resonantly captured beam was ex-
cited with a set of very weakly modulated quadrupoles, modulating the tune and
effectively turning the ensemble of free pendula into driven pendula. The frequen-
cy response of the beam was then correlated to the frequency of the modulation

for a reasonable measurement of the island tune.
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Figure 3.6: Beam decoherence from a kick into a sheared non-resonant
section of phase space. The intermediate distribution has a centroid po-
sition that decays with time and approaches a final annular distribution
(which has a larger emittance than the initial distribution and a centroid
position of zero) over approximately hundreds of turns.
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Figure 3.7: Phase space plot of a small beam kicked into an N = 5
nonlinear resonance island. Measurement of the centroid of the kicked
distribution every 5 machine turns shows coherent motion around the
center of the island, making direct measurement of the island tune @

possible.
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Figure 3.8: Phase space plot of a large beam kicked into an N = 5 nonlin-
ear resonance island. The untrapped portion of the beam decoheres and
does not contribute to the coherent centroid motion. The trapped por-
tion coherently moves between resonance islands, but shows no evidence
of the island tune ;.
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Figure 3.9: Sample E778 turn-by-turn data at kick time, showing the
kick and gaussian decoherence. Kicker voltage is 11 kV, in the E778
91.0 lattice. The graphics are produced by the kaspar graphics program.
The decoherence pictured has a timescale of approximately 100 turns.
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Figure 3.10: Sample turn-by-turn data at kick time for two BPMs sepa-
rated by a betatron phase of approximately 70 degrees, showing the kick
and production of a (), = 20.40 persistent signal. Kicker voltage and
lattice are as in above figure. Only 2500 turns are pictured here, but this
coherent oscillation survives for millions of turns.
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