CHAPTER 6
PERSISTENT SIGNALS IN TWO TRANSVERSE DIMENSIONS

In this chapter, we extend the previous one-dimensional analysis of unmodulat-
ed resonance islands presented in Chapter 3 to two transverse dimensions. The
obvious disadvantage of the previous methods is that they offer little or no hope
of investigating two-dimensional resonance strengths experimentally, as persistent
signals are not present when a beam is kicked onto a single coupling or difference
resonance. However, if the crossing point of two linearly independent resonances
is examined with detuning present in both planes, this chapter shows that one
expects to find locally phase-locked motion (and corresponding persistent signals)
in both planes created by the interaction of the pair of resonances.

In § 6.1 a dual-resonance N-turn map is derived from the results of previous
chapters, and predictions for both the stable fixed points of such a map and
the island tunes of linearized motion around these fixed points are presented.
These results are compared to particle tracking in the octupole-decapole lattice
in § 6.2, where the inadequacy of first-order perturbation theory in predicting
small oscillation frequencies for this system is demonstrated. § 6.3 discusses this
and other possible methods of measuring two-dimensional resonance strengths,
and outlines a possible experiment to observe two-dimensional persistent signals,

including realistic requirements on availability of controlled nonlinearities.

6.1 THEORETICAL PREDICTIONS

Here we examine the crossing point of a one-dimensional resonance and a two-
dimensional resonance. For the sake of simplicity and relevance to the previous
chapters, the one-dimensional resonance is assumed to be 5@, while the two-

dimensional resonance is completely general, but specified by kQ, + 1Q,. Sac-
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rificing other resonance terms with the assumption that they are either small or
average out over future summations via the Dirichlet kernel suppression, we can

write a one-turn two-dimensional dual resonance Hamiltonian:

H1(¢x7 JZ,L/)y, Jy) = 27TQ$0JI —|— 27TQy0Jy
1 1
+ Vio(Je) cos(Btby + ¢50)

+ Vi(Jz, Jy) cos(ktby + by + ort) -

Here Vi and Vj; contain the functional dependence of the resonance strengths

(6.1)

on the actions J, and J,, since these dependences cannot be expected to be as
simple as the one-dimensional case. Note that the detuning contains a nonlinear
coupling term «,,, even though the absence of linear coupling is still assumed.
Horizontal motion is expected to be resonant when the horizontal tune is on
the 5@, resonance; for the vertical motion to also fall on the two-dimensional
resonance, the net phase advance within the angle dependence of this resonance
term must be near some multiple of 27. This gives the natural base tunes for this

investigation:

M, kM,

M,
QxOZ 5 ‘I’(Swa QyOZT_ 51 ‘|‘6y7

where M, and M, are integers. Here the ¢; are again assumed to be small, and

(6.2)

motion will approximately repeat itself in the 4-dimensional phase space every
N = 5kl turns. (This is the maximum value necessary for repetition; the motion
will repeat faster than this if 5 and k[l are commensurate.) The actions are invari-
ant to zeroth order, and we can sum over N turns to find the first-order N-turn

Hamiltonian,
Hn(Yg, Jo by, Jy) =27N 6, Jo 4+ 20N 6y J,
N N
+ e JE A+ Nagy JoJy + =y, J?
+ N Vso(Jz) cos(5ba + 650)

+ N Via(Ja, Jy) cos(kiby + liby + &%) -
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Here the phases of the nonlinearities have absorbed the shift from the summation:
Pro = 050 + OT(N — 1)o, and ¢, = ¢pr + k(N — 1)0, + 7l(N — 1)b,.

Equation (6.3) has fixed points akin to the one-dimensional fixed points of the

analysis in Chapter 2. These can be found by examining the difference equations

of motion generated by this Hamiltonian, and setting them to zero at the fixed

points of the map.

Atp, =0 — 270, + pade fp+ aayJy,pp + (V) =0, (6.4a)
Aty =0 = 200y + agyJu pp+ ayyJy fp +9(V) =0, (6.4D)
AT, =0 — B gp+ oy =27k, (6.4¢)
ATy =0 — kby pp+ lby p + by = 27k, . (6.4d)

Assuming the detuning terms are stronger than the resonance driving terms, as
before, Equations (6.4a) and (6.4b) are coupled linear equations for the fixed point

actions, and so they can be easily solved to find

S, fp 27 Qyy Oy bq
; — 6.5
(Jy,fp> QF, — QzgQyy <_0‘xy Qg by (65)

if they are not degenerate; if they are indeed degenerate, no action fixed points

exist. Equations (6.4c) and (6.4d) give the fixed point phases:
7k, — @
¢fafp = Tm ’

b _ wky — O — ke, p
y,fp I :

(6.6)

Motion around these fixed points can be classified in one of four ways depending
on the parity of the integers k, and k, — it is either hyperbolically unstable in
both oscillation directions, hyperbolic in one direction and elliptically stable in
the other, or elliptically stable in both oscillation directions. This last case is the
one that interests us here, because phase localization in both planes will result in

observable persistent signals in both planes. We choose k, and k, even for now,



100
with the knowledge that other fixed points can be investigated by changing their
parity and thus the signs of the resonance strengths Vs and/or Vi;.

Now transform the coordinates to those centered on one of these fixed points,
(Yo, Juy by, Jy) — (04, 1;,0y, 1), via the uncoupled two-dimensional generating

function

F(?Z)xvfxv?byvfy) = (Ix + Jf,fp)(¢f - ¢x,fp) + (Iy + Jy,fp)(¢y - ¢y,fp) . (6-7)

Applying this transformation to the N-turn Hamiltonian (6.3) and keeping only
first order terms in the nonlinear strengths V3; and a;; gives a N-turn Hamiltonian

that has the form of a pair of coupled pendula:

N N
Hy = Eoszg + Nagy, LT, + anyfj
+ N Vso(Ja.gp) cos(56,) (6.8)

+ N Vi( Tz, tp, Sy, fp) cos(kb, +16,) .
The resonance strengths Vo 5, and Vi 5, are evaluated explicitly at the action
fixed points (J tp, Jy, fp)-
Linearizing the coupled motion given by this Hamiltonian is a tedious but s-
traightforward process. The final result of this linearization gives the motion of

the angle variables (6,,6,) as

éx _ 2 Mll M12 ex
()= (G 3) (5) (50

where time derivatives are taken with respect to N-turn motion, and the individual
matrix elements of the coupled motion are

My =25 ag, V50,fp +k Vkl,fp (kaww + Zawy)
M, =1 Vkl,fp (kawx + Zawy)

(6.95)
Moy = 25 agy Vso,pp + k Viapp (kaey + loyy)

Moz =1 Vi, fp (kagy + layy) .
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There are two normal mode “island” frequencies of the two coupled oscillators in
Equation (6.9). These could be found by diagonalizing the matrix M, as could
the eigenvectors that represent the normal modes of oscillation. However, since
we are primarily concerned with the island frequencies here, we can find those
by calculating the eigenvalues of M directly. Note that if either or both of these
eigenvalues are negative or imaginary, local motion here is unstable and expansion
should proceed around a different fixed point, changing either or both of the signs
of the resonance strengths in the N-turn Hamiltonian (6.8).

For completeness, the island tunes corresponding to this motion are

Aso0Vs0,rp + At Vi, fp

[27Q1(1,2)]2 = )
2 (6.10a)
N \/(A50V5o,fp + ArtVit,p)” = AiVso,1p Vit gp
2 2
where the amplitudes Asg, Ax; and A; are defined by
A50 = 2505xx 5
Apr = (B ogy + 2klogy + Pay,) , (6.100)

A= 10012(0zmayy — aiy) )

Assuming that the resonance strengths Vo and Vi, are both positive, these island

tunes are both positive real if A; lies within the range

(AsoVso,rp + Akt Vi, fp)?

0 < Aj(stable) <
< A )< Vso,rp Vit fp

(6.11)

An amazing prediction of Equation (6.11) is that if all detuning strengths scale
similarly according to some nonlinearity strength, and the resonance strengths
scale similarly according to another nonlinearity strength, then the local stability
of this system is independent of both these resonance strengths to first order.
One easily testable scaling of the island tune prediction is that the island tunes

should scale as the square root of the nonlinearity strength if the resonances are
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driven to first order in that strength. The sum of the squares of the island tunes is

also a more easily accessible quantity to test against theory; from Equation (6.10a)

this is found to be
[27Q11]* + [27Q12])? = As0Vso. rp + AktVit fp 5 (6.12)

which scales as the product of the nonlinear strengths driving the detuning and

the resonances.

6.2 TRACKING OF TWO-DIMENSIONAL
RESONANCE ISLANDS AND PERSISTENT SIGNALS

The question remains as to whether such two-dimensional resonance islands
can be observed in a tracking code, and whether the first-order analysis suffices
to predict their island tunes and locations in phase space. Using the octupole-
decapole model and a program Od2Track, which was written to track this model
in both transverse dimensions, two-dimensional detuning parameters a;; are first
measured as functions of amplitude in both planes and compared to first-order
predictions for the octupoles. A working point must be chosen where the 5Q),
resonance and another resonance driven to first order by the decapole cross; this
point in the tune plane (Q.0,Qyo) should also be free of second-order octupole
resonances, since such resonances are not calculated in a first-order analysis. Next,
two-dimensional resonance islands are found and their fixed point amplitudes and
phases are compared to theoretically predicted values. Island tunes are found for
the normal mode oscillations within these resonance islands and compared against
both absolutely predicted values and scaling with the decapole strength by.

From the discussion of the octupole-decapole lattice in Chapter 3 we can write

the first-order dependences of the Hamiltonian parameters «;; and V3; on the
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Tracking Parameter Symbol Value
Octupole strengths (each) bs 0.0100
Decapole strength by 0.0015
Horizontal Tune Offset Oz 0.0050
Vertical Tune Offset Oy 0.0050
Horizontal Base Tune Qo 20.6050
Vertical Base Tune Qyo 20.6550

Table 6.1: Parameters used for two-dimensional persistent signal inves-
tigation in the tracking program Od2Track.

lattice parameters listed in Table 6.1 . The detuning is driven by the octupoles,

1 9.
Uag = Qyy = =50y = 163 (6.13a)

and the resonances are driven by the decapole:

2~
Vig = £b4J;/2 ,

20
2.
Vits = gbu;/?,]y(z,fy —3J,), 6130
\/§~ 3/2 '
Vags = — 754% Jy

2~
Vies = %64,];/2,]5 .

These detuning parameters give the action dependences of the tunes:

)05 0 1))
The resulting “footprint” of this tune shift on the tune plane is a rhombus with an
oblique opening angle of 143°; this is shown in Figure (6.1) as contours of constant
amplitude. Circles in this figure are tunes for tracked particles, with actions in
each plane ranging from 0.0 to 4.0 in steps of 0.4 ; excellent agreement is shown for
the situation where particles are not affected by nearby strong resonances. Note

that the decapole was not turned off for this check, since the second-order tuneshift

from the decapole is expected to be small compared to that of the octupoles.
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Figure 6.1: Comparison of octupole detuning as predicted by Equa-
tion (6.14) to tracking of the octupole-decapole lattice. Lines are pre-
dicted contours of constant action, ranging from 0 to 2 in steps of 0.2.
Circles represent tracked tune offsets. Magnet strengths are as in Ta-
ble (6.1); base tunes are @z = 20.66, Qo = 20.64, far from prevailing

resonarnces.

Now the tune plane must be investigated for an optimal working point for this
tracking experiment to find 2-dimensional persistent signals. For agreement with
the previous theory, the resonances under investigation should both be driven to
first order in the decapole strength, and one should be the horizontal resonance
5@) ;. Since the octupoles are much stronger than the decapoles in this simulation,
creating strong stabilizing detuning, all resonances up to second order in octupole
strengths should be avoided. Examination of the tune plane of Figure (6.2), with
first order decapole resonances represented by solid lines and second order octupole

resonances represented by dashed lines, shows a promising working point at the
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Figure 6.2: The tune plane for the octupole-decapole lattice. Resonances
driven to first order in the decapole strength are represented by solid
lines; resonances driven to second order in the octupole strength are
represented by dashed lines. The circle marks the chosen resonant point,

(Qu ress Qy,res) = (20.60,20.65), for a 2-dimensional decapole resonance
crossing simulation.
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resonant tunes

3 13
r,res — 0.600 = - 5 res — 0.650 = — .
Q 3 5 Qy, 20

At this point the 5Q), and ), —4Q), resonances cross, so k = 1 and [ = —4. Since
both resonance tune denominators are commensurate it suffices to take a Poincaré
surface of section every 20 turns, instead of every 100 turns as would be suggested
by the previous discussion.

For the tracking conditions of Table (6.1) and previously calculated detun-
ing coefficients, the fixed-point actions are predicted by Equation (6.5) to be
Jz sp(theory) = Jy gp(theory) = 1.396. Instead of going through tedious calcula-
tions necessary to predict the fixed point phases, these actions were used as initial
conditions with which to track at a variety of initial phases, searching for initial
conditions that at least lay within the separatrix of the four-dimensional phase
space resonance islands. Such a set of phases, (¢, = 0.2,%, = 0.3), was easily
found after a small range of initial phases were checked, since the long-term tunes
of resonantly trapped particles will be exactly the resonant tunes.

A turn-by turn Poincaré plot of the four-dimensional phase space motion of this
set of initial conditions is pictured at the top of Figure (6.3). This plot certainly
shows that there is some sort of phase space structure present, but it is difficult
to determine whether or not there is resonant motion. Various types of other
tools can be used to visualize different sections of this phase space, including
three-dimensional projections instead of the two-dimensional projections that are
normally used (Holt et. al. 1992). For this analysis, however, a simpler technique
is available, which consists of taking a Poincare surface of section every N = 20
turns of the motion. If the motion is truly resonant, then this stroboscopic view
will show phase-locked motion, and a persistent signal would be visible for a real

distribution of particles launched on and near this orbit. This is indeed the case
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Figure 6.3: Four-dimensional phase space projections used in finding two-
dimensional resonance islands and persistent signals. Coherent motion
is evident in all three plots.
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Figure 6.4: Close-up of tracking very near the fixed point of the two-
dimensional resonance islands, plotted every 20th turn.

for the above initial conditions, as can be seen in the middle of Figure (6.3) — a

resonant orbit appears.

Once any sort of resonant orbit has been found, an iterative process can be used
to find the actual fixed point of the lattice used for tracking. The centroid of the
distribution in each plane is calculated for a number of turns much larger than
the expected island periods, thus averaging over many rotations in the island,
and these centroids are substituted back into the tracking program as new initial
coordinates. This is much less efficient than the more sophisticated methods
used in the one-dimensional fixed-point location algorithm of Chapter 4, but is
much more easily implemented than would be the corresponding 2-dimensional

extension of such an approach. Four iterations yield the fixed point of the lattice
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described in Table (6.1) to four significant figures,
(Yu,fp» To,pp) = (0.0967,1.5104) ,

(ty, £p> Iy, fp) = (0.3314,1.2040) ,

which is gives modest (10-15%) agreement with the fixed point amplitudes predict-
ed by theory. The resulting phase space of an intermediate step of this iterative
process is shown at the bottom of Figure (6.3), and magnified in Figure (6.4) to
show the character of motion for small amplitudes I; near the fixed point. This
motion falls on a two-dimensional torus embedded in the four-dimensional phase
space, since there are two invariants corresponding to the locally phase-locked
motion in each transverse dimension.

Once the fixed point has been found, the island tunes can be measured from
tracking data by taking 20-turn stroboscopic data from either plane and perform-
ing an FFT on some portion of data with 2" data points. Taking 16384 data
points suffices for a measurement of these tunes to an accuracy of approximately
107*, and gives Q71 = 2.1-107* and Q72 = 8.7-107* for the data presented in
Figure (6.4).

For a large range of decapole strengths, up to strengths comparable to the oc-
tupole strength, the island tunes are displayed in Figure (6.5). One peak from the
FFT of small oscillatory motion scales according to gi/z as predicted, but the oth-
er appears to scale linearly. No other significant peaks appear in an examination
of the FFT of this motion, indicating that the linear scaling is not an anomolous
peak created by interference of the natural oscillation frequencies. There is also
no evidence that these peaks are aliased from higher frequencies, as they each
approach zero at zero decapole strengths.

The island tunes predicted by Equations (6.10a) and (6.10b) are also shown in
Figure (6.5), and are nearly three to five times larger than the island tunes found

by tracking. The inconsistency between theory and tracking for the resonant
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Figure 6.5: Two-dimensional island tunes (Qr1,Q72) measured as a
function of decapole strength by in the tracking program Od2fp. All
other lattice parameters for this tracking are as listed in Table (6.1).
Lines are theoretical predictions for island tunes.

crossing point small oscillation tunes also appears at other values of the octupole
strength as well as other resonance crossing points where second-order octupole
resonances are present. This inability of first-order perturbation theory to predict
the small-oscillation motion in these areas of the tune plane is a strong indication
that such approaches fail to give meaningful results at the crossing of several reso-
nances. Higher order resonances are undoubtedly present at these crossing points,
and possibly higher orders of perturbative magnet strengths must be introduced to
reconcile theory with tracking. However, with the addition of other resonances the
linearization process previously described becomes difficult, particularly because

the equations defining the fixed-point phases are transcendental.

6.3 A POSSIBLE EXPERIMENT

How might these two-dimensional persistent signals be observed in a real accel-
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erator? First, one must operate with a small beam — much smaller, in fact, than
any available at the Fermilab Tevatron, since the Tevatron beam size is typically
one-tenth of the physical aperture. Use of a small cooled beam would be optimal,
since this would maximize the proportion of the beam actually trapped within the
four-dimensional phase space well and produce the highest signal-to-noise ratio for
persistent signals in both planes.

Kicks to move the beam onto the two-dimensional resonance islands cannot be
applied independently in each plane with linear coupling present; such linear cou-
pling would rapidly transfer energy in the kicked plane to energy in the unkicked
plane, increasing the beam emittance in the unkicked dimension. Linear coupling
can be removed globally by adjustment of skew quadrupoles, a standard proce-
dure that was also performed in E778 for the explicitly horizontal one-dimensional
kick.

The lattice must be studied extensively for nonlinearities before the study is be-
gun, and both linear and nonlinear coupling must be removed as much as possible.
This implies measuring the detuning coefficients a,., ayy, and a,,. The nonlin-
ear coupling a,, can be measured by kicking the beam in one transverse plane
and observing the tune shift in the unkicked plane, far from strong resonances.
Measurement of three or four points should suffice for a reasonable measurement,
and then octupoles (if present) can be adjusted to remove this component. When
the nonlinear coupling has been removed, turn-by-turn data can be taken in both
planes with separate kicks to test the turn-by-turn data acquisition system and
measure the detuning coefficients «,, and ay,, as has been done previously in
ET7TS.

Once the detuning coefficients are known, the actual amplitudes of the resonance
islands can be calculated to first order, and base tunes can be chosen to optimize

the positions of the four-dimensional phase space fixed points. Kicking first in the
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plane where the one-dimensional resonance is present, a systematic scan of various
kick amplitudes can be performed, and persistent signals should be evident when
the beam is kicked onto the one-dimensional resonance island. Up to this point
such an experiment reproduces previous persistent signal results of E778 without
tune modulation, as well as those of Experiment CE22 at IUCF.

Once the kick amplitude has been found which consistently populates the one-
dimensional resonance island, another kick in the opposite plane can be inserted in
the cycle after the first kick. If linear and nonlinear coupling have been sufficiently
minimized this kick does not couple into motion in the opposite the plane which
has already been resonantly captured, and so it does not disturb this motion.
A similar scan of various kick amplitudes can then be performed in this plane,
searching for production of another persistent signal.

For the purposes of practical measurement of the strengths of two-dimensional
resonances this method is most probably inadequate, since the crossing points
where two-dimensional persistent signals are present are also crossed by many
other resonances which affect the motion around the fixed point. This is evident
in the failure of first-order perturbation theory to predict island tunes. Other
techniques involving observation of orbit distortions in four-dimensional phase s-
pace have been investigated, and prove to be more promising for this application
(Li 1990, Liu 1989). However, such an experiment could be considered a prelude
to investigations of modulational diffusion, which provides a mechanism for lumi-
nosity and luminosity lifetime limitations in storage rings as described in the next
chapter. Modulational diffusion is expected to be present near the intersection of
two strong resonances, in the same region of the tune plane that two-dimensional

persistent signals could be observed.



