
CHAPTER 6PERSISTENT SIGNALS IN TWO TRANSVERSE DIMENSIONSIn this chapter, we extend the previous one-dimensional analysis of unmodulat-ed resonance islands presented in Chapter 3 to two transverse dimensions. Theobvious disadvantage of the previous methods is that they o�er little or no hopeof investigating two-dimensional resonance strengths experimentally, as persistentsignals are not present when a beam is kicked onto a single coupling or di�erenceresonance. However, if the crossing point of two linearly independent resonancesis examined with detuning present in both planes, this chapter shows that oneexpects to �nd locally phase-locked motion (and corresponding persistent signals)in both planes created by the interaction of the pair of resonances.In x 6.1 a dual-resonance N-turn map is derived from the results of previouschapters, and predictions for both the stable �xed points of such a map andthe island tunes of linearized motion around these �xed points are presented.These results are compared to particle tracking in the octupole-decapole latticein x 6.2, where the inadequacy of �rst-order perturbation theory in predictingsmall oscillation frequencies for this system is demonstrated. x 6.3 discusses thisand other possible methods of measuring two-dimensional resonance strengths,and outlines a possible experiment to observe two-dimensional persistent signals,including realistic requirements on availability of controlled nonlinearities.6.1 THEORETICAL PREDICTIONSHere we examine the crossing point of a one-dimensional resonance and a two-dimensional resonance. For the sake of simplicity and relevance to the previouschapters, the one-dimensional resonance is assumed to be 5Qx, while the two-dimensional resonance is completely general, but speci�ed by kQx + lQy. Sac-97



98ri�cing other resonance terms with the assumption that they are either small oraverage out over future summations via the Dirichlet kernel suppression, we canwrite a one-turn two-dimensional dual resonance Hamiltonian:H1( x; Jx;  y; Jy) = 2�Qx0Jx + 2�Qy0Jy+ 12�xxJ2x + �xyJxJy + 12�xyJ2y+ V50(Jx) cos(5 x + �50)+ Vkl(Jx; Jy) cos(k x + l y + �kl) : (6:1)Here V50 and Vkl contain the functional dependence of the resonance strengthson the actions Jx and Jy, since these dependences cannot be expected to be assimple as the one-dimensional case. Note that the detuning contains a nonlinearcoupling term �xy, even though the absence of linear coupling is still assumed.Horizontal motion is expected to be resonant when the horizontal tune is onthe 5Qx resonance; for the vertical motion to also fall on the two-dimensionalresonance, the net phase advance within the angle dependence of this resonanceterm must be near some multiple of 2�. This gives the natural base tunes for thisinvestigation: Qx0 = Mx5 + �x ; Qy0 = Myl � kMx5l + �y ; (6:2)where Mx and My are integers. Here the �i are again assumed to be small, andmotion will approximately repeat itself in the 4-dimensional phase space everyN � 5kl turns. (This is the maximum value necessary for repetition; the motionwill repeat faster than this if 5 and kl are commensurate.) The actions are invari-ant to zeroth order, and we can sum over N turns to �nd the �rst-order N-turnHamiltonian,HN( x; Jx;  y; Jy) = 2�N �x Jx + 2�N �y Jy+ N2 �xxJ2x +N�xyJxJy + N2 �yyJ2y+N V50(Jx) cos(5 x + �050)+N Vkl(Jx; Jy) cos(k x + l y + �0kl) : (6:3)



99Here the phases of the nonlinearities have absorbed the shift from the summation:�050 � �50 + 5�(N � 1)�x and �0kl � �kl + �k(N � 1)�x + �l(N � 1)�y.Equation (6.3) has �xed points akin to the one-dimensional �xed points of theanalysis in Chapter 2. These can be found by examining the di�erence equationsof motion generated by this Hamiltonian, and setting them to zero at the �xedpoints of the map.� x = 0 ! 2��x + �xxJx;fp + �xyJy;fp + #(V ) = 0 ; (6:4a)� y = 0 ! 2��y + �xyJx;fp + �yyJy;fp + #(V ) = 0 ; (6:4b)�Jx = 0 ! 5 x;fp + �050 = 2�kx ; (6:4c)�Jy = 0 ! k x;fp + l y;fp + �0kl = 2�ky : (6:4d)Assuming the detuning terms are stronger than the resonance driving terms, asbefore, Equations (6.4a) and (6.4b) are coupled linear equations for the �xed pointactions, and so they can be easily solved to �nd�Jx;fpJy;fp� = 2��2xy � �xx�yy � �yy ��xy��xy �xx �� �x�y � (6:5)if they are not degenerate; if they are indeed degenerate, no action �xed pointsexist. Equations (6.4c) and (6.4d) give the �xed point phases: x;fp = �kx � �0505 ; y;fp = �ky � �0kl � k x;fpl : (6:6)Motion around these �xed points can be classi�ed in one of four ways dependingon the parity of the integers kx and ky | it is either hyperbolically unstable inboth oscillation directions, hyperbolic in one direction and elliptically stable inthe other, or elliptically stable in both oscillation directions. This last case is theone that interests us here, because phase localization in both planes will result inobservable persistent signals in both planes. We choose kx and ky even for now,



100with the knowledge that other �xed points can be investigated by changing theirparity and thus the signs of the resonance strengths V50 and/or Vkl.Now transform the coordinates to those centered on one of these �xed points,( x; Jx;  y; Jy) ! (�x; Ix; �y; Iy), via the uncoupled two-dimensional generatingfunctionF ( x; Ix;  y; Iy) = (Ix + Jx;fp)( x �  x;fp) + (Iy + Jy;fp)( y �  y;fp) : (6:7)Applying this transformation to the N-turn Hamiltonian (6.3) and keeping only�rst order terms in the nonlinear strengths Vkl and �ij gives a N-turn Hamiltonianthat has the form of a pair of coupled pendula:HN = N2 �xxI2x +N�xyIxIy + N2 �yyI2y+N V50(Jx;fp) cos(5�x)+N Vkl(Jx;fp; Jy;fp) cos(k�x + l�y) : (6:8)The resonance strengths V50;fp and Vkl;fp are evaluated explicitly at the action�xed points (Jx;fp; Jy;fp).Linearizing the coupled motion given by this Hamiltonian is a tedious but s-traightforward process. The �nal result of this linearization gives the motion ofthe angle variables (�x; �y) as� ��x��y � = N2�M11 M12M21 M22�� �x�y � ; (6:9a)where time derivatives are taken with respect toN-turn motion, and the individualmatrix elements of the coupled motion areM11 = 25 �xx V50;fp + k Vkl;fp (k�xx + l�xy)M12 = l Vkl;fp (k�xx + l�xy)M21 = 25 �xy V50;fp + k Vkl;fp (k�xy + l�yy)M22 = l Vkl;fp (k�xy + l�yy) : (6:9b)



101There are two normal mode \island" frequencies of the two coupled oscillators inEquation (6.9). These could be found by diagonalizing the matrix M , as couldthe eigenvectors that represent the normal modes of oscillation. However, sincewe are primarily concerned with the island frequencies here, we can �nd thoseby calculating the eigenvalues of M directly. Note that if either or both of theseeigenvalues are negative or imaginary, local motion here is unstable and expansionshould proceed around a di�erent �xed point, changing either or both of the signsof the resonance strengths in the N-turn Hamiltonian (6.8).For completeness, the island tunes corresponding to this motion are[2�QI(1;2)]2 = A50V50;fp +AklVkl;fp2� q(A50V50;fp +AklVkl;fp)2 ��lV50;fpVkl;fp2 ; (6:10a)where the amplitudes A50, Akl and �l are de�ned byA50 = 25�xx ;Akl = (k2�xx + 2kl�xy + l2�yy) ;�l = 100l2(�xx�yy � �2xy) : (6:10b)Assuming that the resonance strengths V50 and Vkl are both positive, these islandtunes are both positive real if �l lies within the range0 � �l(stable) � (A50V50;fp +AklVkl;fp)2V50;fpVkl;fp : (6:11)An amazing prediction of Equation (6.11) is that if all detuning strengths scalesimilarly according to some nonlinearity strength, and the resonance strengthsscale similarly according to another nonlinearity strength, then the local stabilityof this system is independent of both these resonance strengths to �rst order.One easily testable scaling of the island tune prediction is that the island tunesshould scale as the square root of the nonlinearity strength if the resonances are



102driven to �rst order in that strength. The sum of the squares of the island tunes isalso a more easily accessible quantity to test against theory; from Equation (6.10a)this is found to be[2�QI;1]2 + [2�QI;2]2 = A50V50;fp +AklVkl;fp ; (6:12)which scales as the product of the nonlinear strengths driving the detuning andthe resonances. 6.2 TRACKING OF TWO-DIMENSIONALRESONANCE ISLANDS AND PERSISTENT SIGNALSThe question remains as to whether such two-dimensional resonance islandscan be observed in a tracking code, and whether the �rst-order analysis su�cesto predict their island tunes and locations in phase space. Using the octupole-decapole model and a program Od2Track, which was written to track this modelin both transverse dimensions, two-dimensional detuning parameters �ij are �rstmeasured as functions of amplitude in both planes and compared to �rst-orderpredictions for the octupoles. A working point must be chosen where the 5Qxresonance and another resonance driven to �rst order by the decapole cross; thispoint in the tune plane (Qx0; Qy0) should also be free of second-order octupoleresonances, since such resonances are not calculated in a �rst-order analysis. Next,two-dimensional resonance islands are found and their �xed point amplitudes andphases are compared to theoretically predicted values. Island tunes are found forthe normal mode oscillations within these resonance islands and compared againstboth absolutely predicted values and scaling with the decapole strength ~b4.From the discussion of the octupole-decapole lattice in Chapter 3 we can writethe �rst-order dependences of the Hamiltonian parameters �ij and Vkl on the



103Tracking Parameter Symbol ValueOctupole strengths (each) ~b3 0.0100Decapole strength ~b4 0.0015Horizontal Tune O�set �x 0.0050Vertical Tune O�set �y 0.0050Horizontal Base Tune Qx0 20.6050Vertical Base Tune Qy0 20.6550Table 6.1: Parameters used for two-dimensional persistent signal inves-tigation in the tracking program Od2Track.lattice parameters listed in Table 6.1 . The detuning is driven by the octupoles,�xx = �yy = �12�xy = 94~b3 (6:13a)and the resonances are driven by the decapole:V50 = p220 ~b4J5=2x ;V1�2 = p22 ~b4J1=2x Jy(2Jy � 3Jx) ;V3�2 = � p22 ~b4J3=2x Jy ;V1�4 = p24 ~b4J1=2x J2y : (6:13b)These detuning parameters give the action dependences of the tunes:�QxQy � = �Qx0Qy0�+ 9~b38� � 1 �2�2 1 ��JxJy � (6:14)The resulting \footprint" of this tune shift on the tune plane is a rhombus with anoblique opening angle of 143�; this is shown in Figure (6.1) as contours of constantamplitude. Circles in this �gure are tunes for tracked particles, with actions ineach plane ranging from 0.0 to 4.0 in steps of 0.4 ; excellent agreement is shown forthe situation where particles are not a�ected by nearby strong resonances. Notethat the decapole was not turned o� for this check, since the second-order tuneshiftfrom the decapole is expected to be small compared to that of the octupoles.
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Tunes tracked by od2track
Tunes from Equation (7.14)Figure 6.1: Comparison of octupole detuning as predicted by Equa-tion (6.14) to tracking of the octupole-decapole lattice. Lines are pre-dicted contours of constant action, ranging from 0 to 2 in steps of 0.2.Circles represent tracked tune o�sets. Magnet strengths are as in Ta-ble (6.1); base tunes are Qx0 = 20:66, Qy0 = 20:64, far from prevailingresonances.Now the tune plane must be investigated for an optimal working point for thistracking experiment to �nd 2-dimensional persistent signals. For agreement withthe previous theory, the resonances under investigation should both be driven to�rst order in the decapole strength, and one should be the horizontal resonance5Qx. Since the octupoles are much stronger than the decapoles in this simulation,creating strong stabilizing detuning, all resonances up to second order in octupolestrengths should be avoided. Examination of the tune plane of Figure (6.2), with�rst order decapole resonances represented by solid lines and second order octupoleresonances represented by dashed lines, shows a promising working point at the
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Figure 6.2: The tune plane for the octupole-decapole lattice. Resonancesdriven to �rst order in the decapole strength are represented by solidlines; resonances driven to second order in the octupole strength arerepresented by dashed lines. The circle marks the chosen resonant point,(Qx;res; Qy;res) = (20:60; 20:65), for a 2-dimensional decapole resonancecrossing simulation.



106resonant tunesQx;res = 0:600 = 35 ; Qy;res = 0:650 = 1320 :At this point the 5Qx and Qx� 4Qy resonances cross, so k = 1 and l = �4. Sinceboth resonance tune denominators are commensurate it su�ces to take a Poincar�esurface of section every 20 turns, instead of every 100 turns as would be suggestedby the previous discussion.For the tracking conditions of Table (6.1) and previously calculated detun-ing coe�cients, the �xed-point actions are predicted by Equation (6.5) to beJx;fp(theory) = Jy;fp(theory) = 1:396. Instead of going through tedious calcula-tions necessary to predict the �xed point phases, these actions were used as initialconditions with which to track at a variety of initial phases, searching for initialconditions that at least lay within the separatrix of the four-dimensional phasespace resonance islands. Such a set of phases, ( x = 0:2;  y = 0:3), was easilyfound after a small range of initial phases were checked, since the long-term tunesof resonantly trapped particles will be exactly the resonant tunes.A turn-by turn Poincar�e plot of the four-dimensional phase space motion of thisset of initial conditions is pictured at the top of Figure (6.3). This plot certainlyshows that there is some sort of phase space structure present, but it is di�cultto determine whether or not there is resonant motion. Various types of othertools can be used to visualize di�erent sections of this phase space, includingthree-dimensional projections instead of the two-dimensional projections that arenormally used (Holt et. al. 1992). For this analysis, however, a simpler techniqueis available, which consists of taking a Poincare surface of section every N = 20turns of the motion. If the motion is truly resonant, then this stroboscopic viewwill show phase-locked motion, and a persistent signal would be visible for a realdistribution of particles launched on and near this orbit. This is indeed the case
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Figure 6.3: Four-dimensional phase space projections used in �nding two-dimensional resonance islands and persistent signals. Coherent motionis evident in all three plots.
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Figure 6.4: Close-up of tracking very near the �xed point of the two-dimensional resonance islands, plotted every 20th turn.for the above initial conditions, as can be seen in the middle of Figure (6.3) | aresonant orbit appears.Once any sort of resonant orbit has been found, an iterative process can be usedto �nd the actual �xed point of the lattice used for tracking. The centroid of thedistribution in each plane is calculated for a number of turns much larger thanthe expected island periods, thus averaging over many rotations in the island,and these centroids are substituted back into the tracking program as new initialcoordinates. This is much less e�cient than the more sophisticated methodsused in the one-dimensional �xed-point location algorithm of Chapter 4, but ismuch more easily implemented than would be the corresponding 2-dimensionalextension of such an approach. Four iterations yield the �xed point of the lattice



109described in Table (6.1) to four signi�cant �gures,( x;fp; Jx;fp) = (0:0967; 1:5104) ;( y;fp; Jy;fp) = (0:3314; 1:2040) ;which is gives modest (10-15%) agreement with the �xed point amplitudes predict-ed by theory. The resulting phase space of an intermediate step of this iterativeprocess is shown at the bottom of Figure (6.3), and magni�ed in Figure (6.4) toshow the character of motion for small amplitudes Ii near the �xed point. Thismotion falls on a two-dimensional torus embedded in the four-dimensional phasespace, since there are two invariants corresponding to the locally phase-lockedmotion in each transverse dimension.Once the �xed point has been found, the island tunes can be measured fromtracking data by taking 20-turn stroboscopic data from either plane and perform-ing an FFT on some portion of data with 2n data points. Taking 16384 datapoints su�ces for a measurement of these tunes to an accuracy of approximately10�4, and gives QI;1 = 2:1 � 10�4 and QI;2 = 8:7 � 10�4 for the data presented inFigure (6.4).For a large range of decapole strengths, up to strengths comparable to the oc-tupole strength, the island tunes are displayed in Figure (6.5). One peak from theFFT of small oscillatory motion scales according to ~b1=24 as predicted, but the oth-er appears to scale linearly. No other signi�cant peaks appear in an examinationof the FFT of this motion, indicating that the linear scaling is not an anomolouspeak created by interference of the natural oscillation frequencies. There is alsono evidence that these peaks are aliased from higher frequencies, as they eachapproach zero at zero decapole strengths.The island tunes predicted by Equations (6.10a) and (6.10b) are also shown inFigure (6.5), and are nearly three to �ve times larger than the island tunes foundby tracking. The inconsistency between theory and tracking for the resonant



110
0.0000 0.0010 0.0020 0.0030 0.0040 0.0050

Normalized Decapole Strength ~b4

0.0000

0.0005

0.0010

0.0015

T
w

o-
D

im
en

si
on

al
 I

sl
an

d 
FF

T
 P

ea
ks

 (
tu

rn
s-1

)

QI,1

QI,2

Figure 6.5: Two-dimensional island tunes (QI;1; QI;2) measured as afunction of decapole strength ~b4 in the tracking program Od2fp. Allother lattice parameters for this tracking are as listed in Table (6.1).Lines are theoretical predictions for island tunes.crossing point small oscillation tunes also appears at other values of the octupolestrength as well as other resonance crossing points where second-order octupoleresonances are present. This inability of �rst-order perturbation theory to predictthe small-oscillation motion in these areas of the tune plane is a strong indicationthat such approaches fail to give meaningful results at the crossing of several reso-nances. Higher order resonances are undoubtedly present at these crossing points,and possibly higher orders of perturbative magnet strengths must be introduced toreconcile theory with tracking. However, with the addition of other resonances thelinearization process previously described becomes di�cult, particularly becausethe equations de�ning the �xed-point phases are transcendental.6.3 A POSSIBLE EXPERIMENTHow might these two-dimensional persistent signals be observed in a real accel-



111erator? First, one must operate with a small beam | much smaller, in fact, thanany available at the Fermilab Tevatron, since the Tevatron beam size is typicallyone-tenth of the physical aperture. Use of a small cooled beam would be optimal,since this would maximize the proportion of the beam actually trapped within thefour-dimensional phase space well and produce the highest signal-to-noise ratio forpersistent signals in both planes.Kicks to move the beam onto the two-dimensional resonance islands cannot beapplied independently in each plane with linear coupling present; such linear cou-pling would rapidly transfer energy in the kicked plane to energy in the unkickedplane, increasing the beam emittance in the unkicked dimension. Linear couplingcan be removed globally by adjustment of skew quadrupoles, a standard proce-dure that was also performed in E778 for the explicitly horizontal one-dimensionalkick.The lattice must be studied extensively for nonlinearities before the study is be-gun, and both linear and nonlinear coupling must be removed as much as possible.This implies measuring the detuning coe�cients �xx, �yy, and �xy. The nonlin-ear coupling �xy can be measured by kicking the beam in one transverse planeand observing the tune shift in the unkicked plane, far from strong resonances.Measurement of three or four points should su�ce for a reasonable measurement,and then octupoles (if present) can be adjusted to remove this component. Whenthe nonlinear coupling has been removed, turn-by-turn data can be taken in bothplanes with separate kicks to test the turn-by-turn data acquisition system andmeasure the detuning coe�cients �xx and �yy, as has been done previously inE778.Once the detuning coe�cients are known, the actual amplitudes of the resonanceislands can be calculated to �rst order, and base tunes can be chosen to optimizethe positions of the four-dimensional phase space �xed points. Kicking �rst in the



112plane where the one-dimensional resonance is present, a systematic scan of variouskick amplitudes can be performed, and persistent signals should be evident whenthe beam is kicked onto the one-dimensional resonance island. Up to this pointsuch an experiment reproduces previous persistent signal results of E778 withouttune modulation, as well as those of Experiment CE22 at IUCF.Once the kick amplitude has been found which consistently populates the one-dimensional resonance island, another kick in the opposite plane can be inserted inthe cycle after the �rst kick. If linear and nonlinear coupling have been su�cientlyminimized this kick does not couple into motion in the opposite the plane whichhas already been resonantly captured, and so it does not disturb this motion.A similar scan of various kick amplitudes can then be performed in this plane,searching for production of another persistent signal.For the purposes of practical measurement of the strengths of two-dimensionalresonances this method is most probably inadequate, since the crossing pointswhere two-dimensional persistent signals are present are also crossed by manyother resonances which a�ect the motion around the �xed point. This is evidentin the failure of �rst-order perturbation theory to predict island tunes. Othertechniques involving observation of orbit distortions in four-dimensional phase s-pace have been investigated, and prove to be more promising for this application(Li 1990, Liu 1989). However, such an experiment could be considered a preludeto investigations of modulational di�usion, which provides a mechanism for lumi-nosity and luminosity lifetime limitations in storage rings as described in the nextchapter. Modulational di�usion is expected to be present near the intersection oftwo strong resonances, in the same region of the tune plane that two-dimensionalpersistent signals could be observed.


