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ABSTRACT

NONLINEAR RESONANCE ISLANDS AND MODULATIONAL
EFFECTS IN A PROTON SYNCHROTRON

Tadd J. Satogata

We examine both one-dimensional and two-dimensional nonlinear resonance
islands ereated in the transverse phase space of a proton synchrotron by nonlinear
magnets. We also examine application of the thearetieal framework construeted
to the phenomenon of modulational diffusion in a collider model of the Fermilab

Tevatron.

For the one-dimensional resonance island system, we examine the effects of two
types of modulational perturbations on the stability of these resonance islands:
tune modulation and beta funetion modulation. Hamiltonian madels are present-
ed which predict stability boundaries that depend on only three parameters: the
strength and frequeney of the modulation and the frequeney of small oscillations
inside the resonance island. These models are compared to particle tracking with
excellent agreement. The tune modulation model is also successfully tested in
experiment, where fn‘:qutnl:].r domain anal}'nin mup]:.'d with tune modulation is

demonstrated to be nseful in measuring the strength of a nonlinear resonance.

Nonlinear resonance islands are also examined in two transverse dimensions
in the presence of coupling and linearly independent crossing resonances. We
present a first-order Hamiltonian model which prediets fixed point loeations, but
does not reproduce small oscillation frequencies seen in tracking; therefore in this
cirenmstance such a model is inadequate. Particle tracking is presented which
shows evidenee of two-dimensional persistent Hig;nalr., and we make sugEestlons on

methods for observing such signals in future experiment.
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Finally, we apply the tune modulation stahbility diagram to the explicitly two-
dimensional phenomenon of modulational diffusion in the Fermilab Tevatron with
beam-heam kicks as the souree of nonlinearity. We find that the amplitude growth
ereated by this mechanism in simulation is exponential rather than root-time
as predicted by modulational diffusion models. Finally, we comment upon the
luminosity and lifetime limitations such a mechanism implies in a proton storage

Ting.
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DC QXK quadrupole ealibration of tune shift versus eurrent.
Modulated QXBR quadrupale voltage calibration with AC eurrent.
Phase space at E17 kicker, with sextupole configuration 91 4.
Phase space at E17 kicker, with sextupole configuration 91_1.
Voltage vs. amplitude E17 kicker calibration.
Sample decoherent turn-by-turn data.

Sample {J; = 2/5 resonant turn-by-turn data.

Sample BPM turn-hy-turn data for tune modulated persistent

signal decay, showing sudden decay.

Systematic tune modulation plane seans.

Variation of tune with Elm]:rlitud-:.' for .li::xtupuli: l'_'l::I]'.I.'EE'L'I.IEI.‘tiﬂ'I!'.I a1,

ineluding predictions from tracking.

Variation of tune with amplitude for sextupole configuration 91_1,

ineluding predictions from tracking.

Persistent signal decay in the frequency domain, for 910

eonfiguration. 0Hz < {J 8y < 30Hz, with g = 0.0002.

Same as Figure 4.13, except for 50Hz < (Jay < 100Hz,

Same as Figure 4.13, except for 100Hz < (Jar < 150Hz.

Same as Figure 4.13, except for 150Hz < (Jyy < 200Hz.

Same as Figure 4.13, except for 200Hz < QJyy < 250Hz.

Same as Figure 4.13, except for 250Hz < QJar < J00Hz.

Same as Figure 4.13, except for 300Hz < (Jyy < 350Hz.

Same as Figure 4,13, except for 0Hz < Qar < 350He.

Persistent signal decay rate for chirps in Figures 4.13-20, including

decay rate from simulation.

Tune modulation parameter plane (g, (2yy ). showing results for

910 eonfiguration with {J; = 6.3 = 107%.
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Comparison of two-dimensional octupole detuning to tracking.

The tune plane for the octupole-decapole lattice, showing first order
decapole resonances and second-order actupole resonances.

Four-dimensional phase space projections of a two-dimensional
persistent signal.

Magnified view of motion very near a four-dimensional fixed-point.

Two-dimensional island tunes versus decapole strength, from tracking.

One-dimensional regular and chaotic motion.

Resonances and scales for modulational diffusion.

The tune plane for typical Fermilab 1992 collider aperations.
Maximum vertical amplitudes over 10 and 100 synchrotron periods,

traclked with the Tevatron eollider lattioe.

Same as Figure 6.4, tracked over 1000 and 10000 synchrotron periods.

Character of vertical amplitude growth.
Exponential vertical amplitude growth rates versus sealed distanee to

nearest coupling resonance.
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