

Commissioning and Status of the CEBAF 12 GeV Upgrade at Jefferson Lab

Todd Satogata / Center for Advanced Studies of Accelerators

April 11-14 2015

Outline

- Introduction to Jefferson Lab and the CEBAF 12 GeV Upgrade
- 12 GeV Commissioning and Project Preparations
- 12 GeV Commissioning **Results** and **Timeline**
- 12 GeV Future Run Plans and Physics

- Location of CEBAF (the Continuous Electron Beam Accelerator Facility)
 - Operating since 1995; 1300+ users in 170+ experiments
 - Produces ~1/3 of US Ph.D.s in Nuclear Physics
- SRF Institute is active leader in SRF technology
 - Including CEBAF 12 GeV upgrade SRF development (with RI)
- Leadership in development of **polarized electron sources**
- Accelerator physics and diagnostics development
- K-12 Science Education program serves as national model
- 169 acre site with 80+ buildings, 700+ ksf
- 760+ FTEs with 20+ joint faculty
- Annual budget: \$180M, mostly through DOE ONP

6 GeV CEBAF Overview

First large high power (MW) CW recirculating electron linac based on SRF Capabilities: 5 passes, multiple beam energies / intensities / polarizations 3 experimental halls running simultaneously

12 GeV Upgrade: proposed in late 1990s → approved and funded in 2004

Scope of 12 GeV Upgrade

6 GeV to 12 GeV Parameters

	6 GeV Operations	12 GeV Design/Requirements
Energy to Halls A,B,C / D	6 GeV	11 GeV / 12 GeV
Number of passes for Halls A,B,C / D	5	5 / 5.5 (add a tenth arc)
Duty Factor	CW, 499 Mhz	CW 499 Mhz, 250 Mhz
Max. Current to Halls A+ C / B	200 🕅 A / 5 🕅 A	
Max. Current to Halls A+C / B+D		85 🕅 A / 5 🕅 A
Max. Beam Power	1 MW	1 MW
Emittance at max. energy (geometric, rms): x, y	1 nm-rad, 1 nm-rad	10 nm-rad, 2 nm-rad
Energy spread at max. energy (rms)	2.5 x 10⁻⁵	5 x 10 ⁻⁴ / 5 x 10 ⁻³
Bunch length (rms)	0.2 ps	~1 ps
Polarization	80%	80%

12 GeV Scientific Capabilities

Hall D – exploring origin of confinement by studying exotic mesons

Hall B – understanding nucleon structure via generalized parton distributions

Hall C – precision determination of valence quark properties in nucleons and nuclei

Hall A –form factors, future new experiments (e.g., SoLID and MOLLER)

Hall D: GlueX

Jefferson Lab

physics

Outline

- Introduction to Jefferson Lab and the CEBAF 12 GeV Upgrade
- 12 GeV Commissioning and Project Preparations
- 12 GeV Commissioning Results and Timeline
- 12 GeV Future Run Plans and Physics

RF/Cryomodule Design/Production

- C100 cryomodule: 8 7-cell cavities, 1497 MHz
 - Designed for 108 MV/cryomodule; 98 MV/module needed for 12 GeV
- Cavities produced with industry (Research Instruments)
- Assembly and 18-step qualification testing at Jefferson Lab
 - Electropolishing production process derived from ILC R&D
- Design gradient: **19.2 MV/m** average
- Operational limits: ~25 MV/m (klystron-limited)
 - Cavity Qs are BCS-limited, average heat load 29 W/cavity
 - Active piezo microphonics feedback, 120° HOM dampers

Cryomodule Tests and Performance

C100-1 and C100-2 HOM survey from CMTF

Show HOM impedances well below conservative threshold

- All cavities and cryomodules were acceptance tested in CMTF/tunnel
 - Measure tuning, HOMs, max gradient, field emission, Q₀, microphonics and heat loads
- HOM survey (TE111, TM110, TM111) via BTF and beam tests
 - BBU threshold over 10x maximum expected beam loading
 - Early commissioning beam tests with worst-case optics: no BBU seen

Cryogenics

12 GeV project

Add new CHL2 central liquifier Recommission SCM coldbox Separate CHL-SC pairs for each linac

Both linacs on separate CHL lines on Dec 9 2013

APS

Hot Checkout / Readiness Tool

Web-based tool: captures readiness of all hardware for beam operations Over 15000 components in system for 5.5 pass to Hall D Halls starting to use tool for their own checkout

🖌 Hot Checkout

APS

Model-Based Operations

APS

Magnetic Field Quality

JA

Magnet Measurement Facility Data

- All dipole and septa magnets measured
- All quad families measured
- Integrated dipole field, gradient, higher order multipole data
- Field data entered into CEBAF element database (CED)
- Control system uses magnet information from CED
- Much improved optics matching

Diagnostics for New Beamlines

Stripline BPM for Hall D line

12 GeV Beam Diagnostics 62 antenna BPMs (arcs etc) 26 stripline BPMs (Hall D) 2 cavity "nA" BPMs 6 dual-plane wire scanners 16 fluorescent viewers 3 synchrotron light monitors

Synchrotron light monitors at high dispersion locations in arcs 1 and 2 now provide truly parasitic beam quality monitoring, including energy tails and slow modulations

Outline

- Introduction to Jefferson Lab and the CEBAF 12 GeV Upgrade
- 12 GeV Commissioning and Project Preparations
- 12 GeV Commissioning Results and Timeline
- 12 GeV Future Run Plans and Physics

Commissioning Objectives

Main Goals for **November 2013-May 2014** Deliver 2.2 GeV beam to 2R dumplette Deliver >6 GeV CW beam to Hall A Deliver >10 GeV beam to Hall D Main Goals for **November 2014-May 2015** Commission 750 MHz separators CW beam to multiple halls Three-beam CW beam program Measure/improve machine model

Commissioning Timeline

20

Jefferson Lab

physics

Commissioning Milestones

2.2 GeV availability for 8 hrs 2.2 GeV beam on Arc 2 viewer Hall A: first 6.1 GeV scattered e-

10.5 GeV to Hall D ramp

10.5 GeV to Hall D Tagger Dump

First Hall D GlueX events

2015 Commissioning Milestones

- FY15 Winter shutdown •
 - Upgraded dogleg system
 - Installed 5th pass 750 MHz RF separators (to support 4-hall operations)
 - Installed 250 MHz drive lasers for polarized source
- FY15 Spring run •
 - Commissioned 250 MHz drive laser system
 - Commissioned 750 MHz RF separators
 - Simultaneous beam to Halls A and D on 5th pass

750 MHz separated A and D beams in Arc 10 viewer

Meeting Beam Requirements

- Optimizing performance of SRF systems
 - Online genetic algorithms for gradient/heat load optimization
- Understanding synchrotron radiation effects
 - Synchrotron radiation compensation coils in higher-pass arcs
 - Design optics to minimize transverse emittance growth
- Model and matching improvements
 - Towards a "model-driven machine", lower tuning deviation from design
 - Improve speed, reproducibility of transverse matching
 - LOCO: measure body gradients of spreader/arc/recombiner dipoles
 - RayTrace: measure phase space pseudo-ellipse evolution
- Other 12 GeV operational limitations
 - Pathlength control: dogleg upgrade
 - Tunnel air conditioning and environmental heat management

Model-Based Optics Rematching

Before match, as found

After match

All data plotted is the projected beam ellipse in (x,x') at start of an upstream scanned quad

This data is for Arc 9 spreader

Blue and green ellipses are measurements

Red data is model prediction

Discrepancy in horizontal after match is only due to measured beam emittance being larger from expected design value

Faster, more reproducible optics matching through CEBAF

Optimizing SRF Performance

Run Period	Dates	Max. 5.5pass	Trip Downtime Goal		
		Energy	(% - min/hr)		
ACC-III	Fall2014	11 GeV	<20% <12		
ACC-IV	Spring2015	11 GeV	<17% <10		
Phy-I	Fall2015	12 GeV	<20% <12		
Phy-II	Spring2016	12 GeV	<17% <10		
Phy-III	Fall2016	12 GeV	<13% <8		
Phy-IV	Spring2017	12 GeV	<12% <7		
Phy-V	Fall2017	12 GeV	<10% <6		
Phy-VI	Spring2018	12 GeV	<10% <6		
Ultimate		12 GeV	<5% <3		

- Multiple paths to reach availability goals over time
 - Improve operations cavity recovery processes, post-trip retune time
 - Improve C20 trip models: maximize gradient, minimize trip rate
 - Continue C20→C50 refurbishment program
 - In-situ He processing to improve gradients, reduce field emission

Outline

- Introduction to Jefferson Lab and the CEBAF 12 GeV Upgrade
- 12 GeV Commissioning and Project Preparations
- 12 GeV Commissioning Results and Timeline
- 12 GeV Future Run Plans and Physics

Cavity Helium Processing

Helium processing of C100 cryomodules

Introduce helium gas into cavity vacuum space

Run RF to clean cavity surfaces

Warm up and pump down to remove all residual gas

Improves high-field Q, reduces field emission, greatly reduces arcing at cold ceramic window

Future plans are to routinely helium process some cryomodules every summer shutdown

Future Run Plans and Physics

- Summer FY15: Install AC, complete power distribution work, install C50 cryomodule, He process C100 cavities
- Fall FY16: Finalize optics, demonstrate full 12 GeV capability

Future 12 GeV Physics Program

Торіс	Hall A	Hall B	Hall C	Hall D	Other	Total
The Hadron spectra as probes of QCD (GlueX and heavy baryon and meson spectroscopy)		1		3		4
The transverse structure of the hadrons (Elastic and transition Form Factors)	5	3	2	1		11
The longitudinal structure of the hadrons (Unpolarized and polarized parton distribution functions)	2	3	6			11
The 3D structure of the hadrons (Generalized Parton Distributions and Transverse Momentum Distributions)	5	9	7			21
Hadrons and cold nuclear matter (Medium modification of the nucleons, quark hadronization, N-N correlations, hypernuclear spectroscopy, few-body experiments)	6	3	7		1	17
Low-energy tests of the Standard Model and Fundamental Symmetries	3	1		1	1	6
TOTAL	21	20	22	5	2	70

At least a decade of productive physics with 12 GeV CEBAF

Acknowledgments

- This work is presented on behalf of Jefferson Laboratory staff, particularly members of the Operations and Beam Transport Teams
- Special thanks to M. Spata, Y. Roblin, A. Freyberger, F. Pilat, J. Benesch, M. Tiefenback, D. Turner, and M. McCaughan.
- And thanks to you, the audience, for your attention and interest in the CEBAF 12 GeV program!

CEBAF Detail Schematic

Transverse Emittance Evolution

				12 Col/CEDAE bac interacting
Region	⊠p/p	××	Жy	non-equilibrium beam evolution
	[x10 ⁻³]	[nm]	[nm]	
Chicane	0.5	4.00	4.00	
Arc 1	0.05	0.41	0.41	Adiabatic damping dominated
Arc 2	0.03	0.26	0.23	
Arc 3	0.035	0.22	0.21	
Arc 4	0.044	0.21	0.24	Arcs 6 10 with optics
Arc 5	0.060	0.33	0.25	Reconfigured from FODO to DBA
Arc 6	0.090	0.58	0.31	
Arc 7	0.104	0.79	0.44	Supervision radiation dominated
Arc 8	0.133	1.21	0.57	Synchrotron radiation dominated
Arc 9	0.167	2.09	0.64	
Arc 10	0.194	2.97	0.95	Emittances are geometric
Hall D	0.18	2.70	1.03	All quantities are rms
				Y. Roblin

Model-Based Optics Rematch (raw)

