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This paper describes an algorithm for quadrupole centering in CEBAF, and presents algorithm testing
results from elegant simulations. The difference of this algorithm is that it intentionally moves the beam
several mm off center in the quadrupole before making quadrupole BDL changes. This improves signal
(downstream orbit changes) to noise (BPM noise) for the quadrupole center measurement. It also avoids
systematic scaling errors by calculating the quadrupole center from a ratio of two separate position offset
measurements.

1 Theory

A beam traveling through a thin quadrupole lens of strength K and length L with transverse position xq
receives an angle kick of

x′after quad − x′before quad = −(KL)xq . (1.1)

If the quadrupole strength changes by ∆K, the change in angle kick from the position offset in the quadrupole
is given by

∆x′q = −(∆K L)xq . (1.2)

This produces a position change at downstream BPMs from the quadrupole strength change of

∆xn = ∆x′q
√
βqβn sin(φn − φq) = −(∆K L)xq

√
βqβn sin(φn − φq) (1.3)

where (βq,n, φq,n) are the betatron functions and phases at the quadrupole and nth downstream BPM,
respectively.

xq is, however, not directly observable. Assume we have a BPM that is close enough to the quadrupole
that its reading xb can be considered to be the measured position at the quadrupole; this reading includes
offset and gain errors from the actual position, where ideally Gb = 1 and xb,offset = 0:

xb = Gbxq + xb,offset ⇒ xq =
xb − xb,offset

Gb
(1.4)

Then (1.3) becomes

∆xn = −(∆K L)

(
xb − xb,offset

Gb

) √
βqβn sin(φn − φq) (1.5)

The usual approach to quad steering is to null ∆xn (the motion in downstream BPMs) vs changes in
quadrupole strength ∆K by adjusting xb until xb − xb,offset = 0. This system is linear, so in an ideal world
this process is immediately invertible and xb,offset in this condition is given by

xb,offset = xb −
Gb∆xn

(∆K L)
√
βqβn sin(φn − φq)

(1.6)

Note that this solution depends on the BPM gain Gb, the absolute calibration of the change in quadrupole
strength ∆K, and the detailed knowledge of the optics transport between the quadrupole and downstream
BPM.
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We can eliminate those dependencies by performing the measurement at two different BPM positions
xb with the same optics, BPM gain, and quadrupole strength change. For these two measurements, (1.5)
becomes

∆xn,1 = −(∆K L)

(
xb,1 − xb,offset

Gb

) √
βqβn sin(φn − φq) (1.7)

∆xn,2 = −(∆K L)

(
xb,2 − xb,offset

Gb

) √
βqβn sin(φn − φq) (1.8)

and taking a ratio gives
∆xn,1
∆xn,2

=
xb,1 − xb,offset

xb,2 − xb,offset
(1.9)

The cancellation here assumes that Gb and xb,offset (the gain and offset from the measured BPM position to
actual quadrupole position relative to center) are the same for both measurements. This is satisfied if the
beam angle at the BPM is unchanged between the two measurements; this steering can be done with a 4-
bump (see appendix). The cancellation also assumes that positions are sufficiently small that the relationship
between actual and measured BPM position in each BPM is linear.

Solving (1.9) for xb,offset gives

xb,offset =
xb,2∆xn,1 − xb,1∆xn,2

(∆xn,1 −∆xn,2)
(1.10)

This calculation of xb,offset eliminates most of the systematic error sources from the previous calculation,
at the expense of raising the sensitivity to random BPM position measurement noise. That sensitivity
can be reduced by taking averages of several BPM position measurements and evaluating (1.10) for many
downstream BPMs.

(1.10) can be simplified slightly further by using symmetric initial conditions with xb = xb,2 = −xb,1.
Then (1.10) becomes

xb,offset = xb

(
∆xn,1 + ∆xn,2
∆xn,1 −∆xn,2

)
(1.11)

Both (1.10) and (1.11) can be calculated for each BPM downstream of the quadrupole to give a distribu-
tion of measured quadrupole offsets. However, the denominator can be quite small for BPMs that are nearly
in phase with the change in transverse kick produced by the quadrupole change, so in practice only offsets
calculated for conditions where ∆xn,1 −∆xn,2 is above a suitable threshold should be included.

A small correction can be applied to the correlation between xb and xq when a single upstream corrector
is used to adjust the orbit position at the quadrupole/BPM pair. This correction is typically a few percent
(about 1.025 on xb) for a consecutive arc corrector/quadrupole pair such as that in the next section, and
comes from the fact that the beam motion in the quadrupole is a systematically different amplitude than
that in the nearby BPM. This correction can be avoided by using two upstream correctors as part of a three-
or four-bump configuration to change the beam position in the quadrupole as discussed in the appendix,
but in practice this is probably a tolerable systematic error for BPM/quadrupole pairs located on the same
girder that will be quad centered.

2 Simulations

2.1 Ideal Conditions

Consider a horizontal quad centering of the BPM/quad pair IPM2E02 and MQB2E02, located on the same
girder and separated by a distance of 0.45m. MQB2E02 is displaced by +200µm in the elegant model with
the &alter elements command. Adjusting the MBT2E01H corrector by ±0.1893 µrad moves the orbit by
±3.0 mm at IPM2E02.

Four beam centroid orbits were generated by an elegant script, simulating four real orbit measurements:

1. The orbit with the MBT2E01H corrector set for +3mm orbit offset at IPM2E02.
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Figure 1: Simulated orbits for horizontal quad centering of MQB2E02 with no BPM noise, and steered orbits
of ±3.0 mm at IPM2E02.

2. The orbit with the MBT2E01H corrector set for +3mm orbit offset at IPM2E02, and MQB2E02 lowered
in strength by 5%.

3. The orbit with the MBT2E01H corrector set for -3mm orbit offset at IPM2E02.

4. The orbit with the MBT2E01H corrector set for -3mm orbit offset at IPM2E02, and MQB2E02 lowered
in strength by 5%.

These orbits are shown in Fig. 1, and the calculated BPM offsets are shown in Fig. 2. The differences in
these orbits at each downstream BPM can be used to calculate the quadrupole offset for MQB2E02 using
(1.11) with xb=3.0 mm. With a reasonable denominator cutoff of 500 µm, the simulation exactly reproduces
the simulated quadrupole offset.
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Figure 2: Calculated quadrupole offsets for horizontal quad centering of MQB2E02 with no BPM noise using
(1.11) and denominator cutoffs as discussed following (1.11).
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2.2 Including BPM Noise
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Figure 3: Calculated quadrupole offsets for horizontal quad centering of MQB2E02 and MQC2A36 with
uncorrelated 100 µ BPM noise using (11) and denominator cutoffs as discussed following (11).

To evaluate this method’s robustness to BPM noise, the simulation above was also run with 100 µm of
uncorrelated BPM noise on all BPMs. This is significantly larger noise than expected on CEBAF BPMs,
where reasonable averaging is reported to give noise levels of approximately 20 µm, but this is considered
to be a worst-case scenario. This corresponds to an attempt to resolve a quadrupole offset (200 µm) that is
twice the size of the BPM noise.

The same analysis as the previous section was performed, including denominator cutoffs, and the result
is shown in Fig. 3. The quadrupole offsets calculated from each individual downstream BPM are now widely
distributed, but the statistical center of the ensemble with the cutoff still measures the quadrupole center at
the level of 5%.

Fig. 3 also shows the same simulation repeated for MQC2A36, a late arc quad in ARC2. Many more
BPMs fall near zero denominator since they are upstream of the quadrupole and therefore show only a noise
response to the quadrupole changes. However, there are still enough BPMs downstream of the quadrupole
at high enough response to give a well-resolved offset measurement. A cutoff threshold of 0.5-1 mm seems
reasoanable for the analysis with these results.

3 Application

The assumption here is that the BPM positions as reported are

XPOS = XRAW − (XSOF + XGOF) , (3.12)
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that XGOF is the general offset used for intentional orbit displacement (e.g. in the arcs to accommodate
path length), and that XSOF is the survey offset of the BPM center relative to the nearest quadrupole
center that can be adjusted based on quad centering measurements. So only XSOF is modified in the below
procedure.

1. Configurable parameters for the quadrupole centering application that should be set before beginning
are:

(a) The quadrupole/BPM pair to be centered and the plane in which they are to be centered. Call
these Q1 and B1. This can be selected from a CED-generated list of quadrupole/BPM pairs
that are both on the same girder and preferably less than 1m apart in s-coordinate, organized
by section and s-coordinate. It doesn’t matter whether the quadrupole or BPM occurs first in
s-coordinate order. Examples of such pairs include IPM1S01/MQB1S01, IPM1E01/MQB1E01,
IPM1A01/MQB1A01, and MQB2L01/IPM2L01.

(b) BPM +/- steering offset xb (in mm).

(c) Analysis denominator cutoff (in mm) as described in section 2.2.

2. Identify the in-plane dipole corrector upstream of Q1 from CED, preferably one girder away. Call this
dipole corrector D1. This corrector will be used to steer the beam at Q1 and B1.

3. Fetch CED in-plane beta and phi for D1 and B1. and calculate the corrector strength ∆x′ change
necessary to move the beam by +xb at Q1:

∆x′ = xb/(
√
βQ1βD1 sinφQ1 − φD1) (3.13)

4. Check that Q1, B1, and D1 are functional and that Q1 is on hysteresis. Produce an error if they are
not.

5. Cache the SOF value for B1.

6. User: Ensure that the accelerator is configured for tune beam, typically 4-8 µA, terminated at a
dumplette significantly downstream (at least half an arc) of the quadrupole/BPM pair to be centered.
This is so the measurement has a reasonable number of downstream BPMs available, while keeping
the beam reasonably short. The user should also confirm that the orbit is reasonably well-corrected to
the termination point before continuing.

7. Display (or have the user display) the ARC BPM absolute spikes screen for the relevant arc.

8. Construct a list of all BPMs from IPM0L01 to the beam termination point from CED.

9. Start ezlogging XPOS and YPOS values for all BPMs in the list, the Q1 BDL, the D1 BDL, and
IBC0R08CRCUR1.VAL at a 1 Hz update rate.

10. Pause 10 seconds to acquire baseline orbit data.

11. Change the D1 BDL as calculated with (3.13) to move the beam by +xb at B1.

12. Pause 10 seconds to acquire baseline orbit data with the orbit shifted by +xb at B1.

13. Inhibit the beam.

14. Cache the Q1 BDL setting.

15. Change the Q1 BDL by 5% of its nominal setting, being careful to stay on hysteresis, and wait for it
to settle.

16. Enable the beam.

17. Pause 10 seconds to acquire orbit data with the orbit shifted by +xb at B1 and the quad changed.

5



18. Inhibit the beam.

19. Restore the original Q1 BDL setting and wait for it to settle.

20. Enable the beam.

21. Repeat steps 9-19, moving the beam by −xb at B1.

22. Stop the ezlogger.

23. Data acquisition complete.

24. The fit is the average of the calculations of xb,offset in Eqn. (1.11) with the denominator larger than
the cutoff; the error bar is the RMS of these calculations.

25. Analysis should calculate Eqn. (1.11) for all BPMs downstream of B1 from ezlogger data, using averages
of multiple beam positions where possible, and display a plot of measured responses and fit quad offset
measurement as shown in, e.g., Fig. 2.

26. Ask the user to verify the data and quality of fit, and whether the offset should be applied. If they
agree that the offset should be applied, calculate SOFnew=SOFcached+xb,offset and set this as the new
B1 SOF for this plane.

27. Procedure complete.

The application should support a batch mode where a user-selected group of BPMs in one section are all
measured and set automatically. All settings, cached values, and intermediate calculations should be logged.

4 Appendix: Orbit Three-Bump and Four-Bump

4.1 Three-Bump Theory

Some of the algorithms here steer the orbit locally using a three-bump, or a local orbit change made with
three dipole correctors. This localizes an intentional orbit change in a single plane at the quadrupole while
limiting downstream orbit changes.

Consider three co-planar dipole correctors numbered 1–3 that provide angle kicks

∆x′i =
∆(BL)i

(Bρ)
(4.14)

where (Bρ) = p/|q| is the beam rigidity. These dipole correctors have transport matrices between them
given by the model, e.g.

M(1→ 2) =

(
M11(1→ 2) M12(1→ 2)
M21(1→ 2) M22(1→ 2)

)
(4.15)

A three-bump is localized if the net orbit change in x and x′ from all three corrector kicks ∆x′i is zero:

M(2→ 3)

[
M(1→ 2)

(
0

∆x′1

)
+

(
0

∆x′2

)]
+

(
0

∆x′3

)
=

(
0
0

)
(4.16)

This gives two constraints for three degrees of freedom; the third degree of freedom is constrained by
specifying the displacement of the three-bump at the second corrector, ∆x2.

The three corrector kick changes necessary to create a closed bump of amplitude ∆x2 at the second
corrector are then

∆x′1 =
∆x2

M(1→ 2)12
(4.17)

∆x′2 = −
[
M(2→ 3)11M(1→ 2)12 +M(2→ 3)12M(1→ 2)22

M(1→ 2)12M(2→ 3)12

]
∆x2 (4.18)

∆x′3 =

(
M(2→ 3)12

(M(1→ 2)12)2

)
∆x2 (4.19)
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The corresponding change in control system BDL can then be calculated from (4.14):

∆(BL)i = ∆x′i(Bρ) (4.20)

∆(BL)i [G− cm] ≈ 3335 ∆x′i [rad] p [MeV/c] (4.21)

Matrix elements (4.15) used in Eqns (4.17-4.19) for the corrector kicks can be acquired from elegant
simulations using the &matrix output command, or can be calculated from CED design optics parameters
at the correctors by:

M(1→ 2)11 =

√
β2

β1
[cos ∆ψ + α1 sin ∆ψ] (4.22)

M(1→ 2)12 =
√
β1β2 sin ∆ψ (4.23)

M(1→ 2)21 = − [α2 − α1] cos ∆ψ + [1 + α1α2] sin ∆ψ√
β1β2

(4.24)

M(1→ 2)22 =

√
β1

β2
[cos ∆ψ − α2 sin ∆ψ] (4.25)

4.2 Three-Bump Example

For example, consider the correctors MBT2E01H, MBT2E02H, and MBT2E03H, which can be used for a
three-bump at the MQB2E02 quadrupole. The optics parameters as given by CED for these correctors are:

Parameter MBT2E01H MBT2E02H MBT2E03H

βx [m] 11.3111 67.6155 8.99423

αx -0.7158 3.04035 -0.21590

ψx [rad] 4.01080 4.63165 5.39379

The calculated transport matrix elements are given by (4.22-4.25):

M(1→ 2)11 = 0.97061 (4.26)

M(1→ 2)12 = 16.08772 m (4.27)

M(1→ 2)21 = −0.08573 m−1 (4.28)

M(1→ 2)22 = −0.39071 (4.29)

M(2→ 3)11 = 1.02947 (4.30)

M(2→ 3)12 = 17.02749 m (4.31)

M(2→ 3)21 = 0.08589 m−1 (4.32)

M(2→ 3)22 = 2.39207 (4.33)

The corrector kicks are given by (4.17-4.19):

∆x′1 = (0.06216 m−1) ∆x2 (4.34)

∆x′2 = (−0.03617 m−1) ∆x2 (4.35)

∆x′3 = (0.06579 m−1) ∆x2 (4.36)

For a total beam energy (or, very nearly, momentum) in ARC2 of p = (106.92 + 950.4 + 950.4) MeV/c as
run late in the spring 2014 run, a bump amplitude of ∆x2 = 3.0 mm gives the necessary changes in corrector
settings of

∆BDL(MBT2E01H) = 1248.606 [G− cm] (4.37)

∆BDL(MBT2E02H) = −726.616 [G− cm] (4.38)

∆BDL(MBT2E03H) = 1321.544 [G− cm] (4.39)
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4.3 Four-Bumps

The three-bump described above creates a transverse orbit displacement that is localized to three correctors,
but the orbit angle also changes everywhere within the bump. To control angle and position independently,
one can use two consecutive overlapping three-bumps that share the same two center correctors. This is
known as a four-bump.

If each of the three-bumps has the same orbit displacement, the overall effect of the four-bump is to move
the orbit between the centermost two correctors without changing the orbit angle. This can be used, for
instance, to move the beam position at the quadrupole for quad centering without changing the beam angle.
This can also be used for controlled transverse aperture exploration. This is known as a position four-bump,
or a symmetric four-bump since the orbit displacement in each of the three-bumps is the same.

If each of the three-bumps has equal and opposite orbit displacement, the overall effect of the four-bump
is to change the orbit at the point midway between the centermost two correctors without changing the orbit
position. This is known as an angle four-bump, or an antisymmetric four-bump since the orbit displacement
in each of the three-bumps is equal and opposite.

These two four-bump modes (symmetric and anti-symmetric) are independent, so a four-bump can be
used to give completely control of beam position and angle independently at the center of the four-bump,
while keeping the orbit distortion localized to the region within the four correctors that comprise the bump.
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